Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T06:51:29.519Z Has data issue: false hasContentIssue false

Reply to comment by D.J. Easterbrook (Quaternary Research 2003, 59 #1, 132–134) on “Determination of 36Cl Production Rates from the Well-Dated Deglaciation Surfaces of Whidbey and Fidalgo Islands, Washington”

Published online by Cambridge University Press:  20 January 2017

Terry W. Swanson*
Affiliation:
Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 981950-1310, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundsen, K., Abella, S., Leopold, E., Stuiver, M., Turner, S., (1994). Late-glacial and early sea-level fluctuations in the Central Puget Lowland, Washington, inferred from lake sediments. Quaternary Research 42, 149161.Google Scholar
Brooks, G.R., Friele, P.A., (1992). Bracketing ages for the formation of the Ring Creek lava flow, Garibaldi volcanic belt, Southwestern British Columbia. Canadian Journal of Earth Sciences 29, 24252428.CrossRefGoogle Scholar
Dethier, D.P., Pessel, F. Jr., Keuler, R.F., Balzarini, M.A., Pevear, D.R., (1995). Late Wisconsinan glaciomarine deposition and isostatic rebound, Northern Puget Lowland, Washington. Geological Society of America Bulletin 107, 12881303.2.3.CO;2>CrossRefGoogle Scholar
Easterbrook, D.J., (1969). Pleistocene chronology of the Puget Lowland and San Juan Islands, Washington. Geological Society of America Bulletin 80, 22732286.Google Scholar
Easterbrook, D.J., (2003). Comment on the paper “Determination of 36Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo islands Washington” by T.W. Swanson and M.C. Caffee. Quaternary Research 59, 132134.Google Scholar
Kovanen, D.J., Easterbrook, D.J., (2001). Late Pleistocene, post-Vashon, alpine glaciation of the Nooksack drainage, North Cascades, Washington. GSA Bulletin 113, 274288.2.0.CO;2>CrossRefGoogle Scholar
Leopold, E.B., Nickmann, R., Hedges, J.I., Ertel, J.R., (1982). Pollen and lignin records of late Quaternary vegetation, Lake Washington. Science 218, 13051307.CrossRefGoogle ScholarPubMed
Mosher, D.C., Hewitt, A.T., (2004). Late quaternary deglaciation and sea-level history of eastern Juan de Fuca Strait, Cascadia. Quaternary International 121, 2339.Google Scholar
Phillips, F.M., Zreda, M.G., Flinsch, M.R., Elmore, D., Sharma, P., (1996). A reevaluation of cosmogenic 36Cl production rates in terrestrial rocks. Geophysical Research Letters 23, 949952.Google Scholar
Porter, S.C., Swanson, T.W., (1998). Advance and retreat rate of the Cordilleran Ice Sheet in southeastern Puget Sound Region. Quaternary Research 50, 205213.Google Scholar
Rubin, M., Alexander, C., (1958). U.S. Geological Survey radiocarbon dates IV. Science 127, 14761487.Google Scholar
Stuiver, M., Pearson, G.W., Braziunas, T., (1986). Radiocarbon age calibrator of marine samples back to 93000 cal yr B.P.. Radiocarbon 28, 9801021.Google Scholar
Swanson, T.W., Caffee, M., (2001). Determination of 36Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo islands Washington. Quaternary Research 56, 366382.Google Scholar
Zreda, M.G., Phillips, F.M., Elmore, D., Kubik, P.W., Sharma, P., (1991). Cosmogenic chlorine-36 production rates in terrestrial rocks. Earth and Planetary Science Letters 105, 94109.Google Scholar