Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:25:26.883Z Has data issue: false hasContentIssue false

A regional record of expanded Holocene wetlands and prehistoric human occupation from paleowetland deposits of the western Yarlung Tsangpo valley, southern Tibetan Plateau

Published online by Cambridge University Press:  20 January 2017

Adam M. Hudson*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
John W. Olsen
Affiliation:
School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
Jay Quade
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
Guoliang Lei
Affiliation:
College of Geographical Sciences, Fujian Normal University, Fujian, 350007, China
Tyler E. Huth
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
Hucai Zhang
Affiliation:
College of Tourism and Geography, Yunnan Normal University, Kunming, 650500, China
*
*[email protected] (A.M. Hudson).

Abstract

The Asian Monsoon, which brings ~80% of annual precipitation to much of the Tibetan Plateau, provides runoff to major rivers across the Asian continent. Paleoclimate records indicate summer insolation and North Atlantic paleotemperature changes forced variations in monsoon rainfall through the Holocene, resulting in hydrologic and ecologic changes in plateau watersheds. We present a record of Holocene hydrologic variability in the Yarlung Tsangpo (YT) valley of the southern Tibetan Plateau, based on sedimentology and 14C dating of organic-rich black mats’ in paleowetlands deposits, that shows changes in wetlands extent in response to changing monsoon intensity. Four sedimentary units indicate decreasing monsoon intensity since 10.4 ka BP. Wet conditions occurred at ~10.4 ka BP, ~9.6 ka BP and ~7.9–4.8 ka BP, with similar-to-modern conditions from ~4.6–2.0 ka BP, and drier-than-modern conditions from ~2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands. Dating of in situ ceramic and microlithic artifacts within the wetlands indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP, supporting evidence for widespread colonization of the Tibetan Plateau in the early and mid-Holocene during warm, wet post-glacial conditions.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., Aitken, M.J., 1998. Dose rate conversion factors: update. Ancient TL 16, 3750.Google Scholar
Ahlborn, M., Haberzettl, T., Wang, J., Fürstenberg, S., Mäusbacher, R., Mazzoco, J., Pierson, J., Zhu, L., Frenzel, P., 2016. Holocene lake level history of the Tangra Yumco lake system, southern-central Tibetan Plateau. The Holocene 26, 176e187.Google Scholar
Aldenderfer, M., Zhang, Y., 2004. The prehistory of the Tibetan Plateau to the seventh century A.D.: perspectives and research from China and west since 1950. Journal of World Prehistory 18, 155.Google Scholar
An, Z., 1982. Palaeoliths and microliths from Shena and Shuanghu, northern Tibet. Current Anthropology 23, 493499.Google Scholar
An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T., Jull, A.J.T., Cai, Y., Huang, Y., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., Xu, X., 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Nature Scientific Reports 2. http://dx.doi.org/ 10.1038/srep00619.Google Scholar
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., Gloaguen, R., 2012. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nature Geoscience 5, 127132.Google Scholar
Ashley, G.M., Tactikos, J.C., Owen, R.B., 2009. Hominin use of springs and wetlands: Paleoclimate archaeological records from Olduvai Gorge (~1.79-1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology 272, 116.Google Scholar
Banerjee, D., Murray, A.S., Bøtter-Jensen, L., Lang, A., 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33, 7393.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., 2000. A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science 289, 15421546.Google Scholar
Bleicher, N., 2013. Summed radiocarbon probability density functions cannot prove solar forcing of Central European lake-level changes. The Holocene 23, 755765.Google Scholar
Bookhagen, B., Burbank, D.W., 2010. Towards a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research 115, F03019. http://dx.doi.org/10.1029/2009JF001426.Google Scholar
Brantingham, P.J., Olsen, J.W., Schaller, G., 2001. Lithic assemblages from the Chang Tang region, northern Tibet. Antiquity 75, 319327.Google Scholar
Brantingham, P.J., Gao, X., 2006. Peopling of the northern Tibetan Plateau. World Archaeology 38, 387414.Google Scholar
Brantingham, P.J., Xing, G., Olsen, J.W., Ma, H., Rhode, D., Zhang, H., Madsen, D.B., 2007. A short chronology for the peopling of the Tibetan Plateau. Developments in Quaternary Sciences 9, 129150.Google Scholar
Brantingham, P.J., Gao, X., Madsen, D.B., Rhode, D., Perreault, C., van der Woerd, J., Olsen, J.W., 2013. Late occupation of the high-elevation northern Tibetan Plateau based on cosmogenic, luminescence, and radiocarbon ages. Geoarchaeology 28, 413431.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R.L., Wang, X., Tan, L., Liang, F., Wang, J., Kelly, M., 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth and Planetary Science Letters 335, 135144.Google Scholar
Carrapa, B., Orme, D.A., DeCelles, P.G., Kapp, P., Cosca, M.A., Waldrip, R., 2015. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: response to slab dynamics and erosion. Geology 42, 443446.Google Scholar
Deines, P., 1980. The isotopic composition of reduced organic carbon. In: Fritz, P., Fontes, J.C. (Eds.), Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment A, vol. 1. Elsevier, Amsterdam, pp. 23406.Google Scholar
Demske, D., Tarasov, P.E., Wünneman, B., Riedel, F., 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology 279, 172185.Google Scholar
Ding, L., Kapp, P., Wan, X., 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 24. http://dx.doi.org/10.1029/2004TC001729.Google Scholar
Feathers, J.K., 2009. Problems of ceramic chronology in the Southeast: does shell-tempered pottery appear earlier than we think? American Antiquity 74, 113-142.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 17371739.Google Scholar
Harris-Parks, E., 2016. The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico. Quaternary Research 85, 94106. http://dx.doi.org/10.1016/j.yqres2015.11.005.Google Scholar
Haynes, C.V. Jr., 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences 105, 65206525.Google Scholar
Hou, J., D’Andrea, W.J., Liu, Z., 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48, 6779.Google Scholar
Hudson, A.M., Quade, J., Huth, T.E., Lei, G., Cheng, H., Edwards, R.L., Olsen, J.W., Zhang, H., 2015. Lake level reconstruction for 12.8-2.3 ka for the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau. Quaternary Research 83, 6679.Google Scholar
Hudson, A.M., Olsen, J.W., Quade, J., 2014. Radiocarbon dating of interdune paleowetland deposits to constrain the age of mid-to-Late Holocene microlithic artifacts from the Zhongba site, southwestern Qinghai-Tibet Plateau. Geoarchaeology 29, 3346.Google Scholar
Hudson, A.M., Quade, J., 2013. Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau. Geology 41, 351354.Google Scholar
Huth, T.E., Hudson, A.M., Quade, J., Lei, G., Zhang, H., 2015. Paleohydrologic reconstruction of Holocene climate 11.5-5.0 ka based on shoreline dating and hydrologic budget modeling of Baqan Tso, southwestern Tibetan Plateau. Quaternary Research 83, 8093.Google Scholar
Kong, P., Na, C., Fink, D., Huang, F., Ding, L., 2007. Cosmogenic 10Be inferred lakelevel changes in Sumxi Co basin, western Tibet. Journal of Asian Earth Sciences 29, 698703.Google Scholar
Kramer, M., Kotlia, B.S., Wünneman, B., 2014. A late Quaternary ostracod record from the Tso Kar basin (North India) with a note on distribution of recent species. Paleolimnology 51, 549565.Google Scholar
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology 15, 809817.Google Scholar
Leipe, C., Demske, D., Tarasov, P.E., HIMPAC Project Members, 2014. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quaternary International 348, 93112.Google Scholar
Lee, J., Li, S., Aitchison, J.C., 2009. OSL dating of paleoshorelines at Lagkor Tso, western Tibet. Quaternary Geochronology 4, 335343.Google Scholar
Li, Q., Lu, H., Zhu, L., Wu, N., Wang, J., Lu, X., 2011. Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP. The Holocene 21, 939950.Google Scholar
Li, T., Wu, Y., Du, S., Huang, W., Hao, C., Guo, C., Zhang, M., Fu, T., 2016. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications. Aeolian Research 20, 169175.Google Scholar
Lister, G.S., Kelts, K., Zao, C.K., Yu, J., Niessen, F., 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology. Palaeoecology 84, 141162.Google Scholar
Liu, X.J., Lai, Z.P., Zeng, F.M., Madsen, D.B., Chong, Y.E., 2013. Holocene lake level variations on the Qinghai-Tibet Plateau. International Journal of Earth Sciences 102, 20072016.Google Scholar
Liu, K.B., Yao, Z., Thompson, L.G., 1998. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology 26, 135138.Google Scholar
Madsen, D.B., Ma, H., Brantingham, P.J., Gao, X., Rhode, D., Zhang, H., Olsen, J.W., 2006. The late Upper Paleolithic occupation of the northern Tibetan Plateau margin. Journal of Archaeological Science 33, 14331444.Google Scholar
Meyer, M.C., Hofmann, Ch.-Ch., Gemmell, A.M.D., Haslinger, E., Häusler, H., Wangda, D., 2009. Holocene glacier fluctuations and migration of Neolithic yak pastoralists into the high valleys of northwest Bhutan. Quaternary Science Reviews 28, 12171237.Google Scholar
Miehe, G., Kaiser, K., Co, S., Zhao, X., Liu, J., 2008. Geo-ecological transect studies in northeast Tibet (Qinghai, China) reveal human-made mid-Holocene environmental changes in the upper Yellow River catchment changing forest to grassland. Erdkunde 62, 187199.Google Scholar
Miehe, G., Miehe, S., Schlütz, F., 2009. Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quaternary Research 71, 255265.Google Scholar
Miehe, G., Miehe, S., Bohner, J., Kaiser, K., Hensen, I., Madsen, D., Liu, J.Q., Opgenoorth, L., 2014. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quaternary Science Reviews 86, 190209.Google Scholar
Mügler, I., Gleixner, G., Gunther, F., Mäusbacher, R., Daut, G., Schütt, B., Berking, J., Schwalb, A., Schwark, L., Xu, B., Yao, T., Zhu, L., Yi, C., 2010. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet. Journal of Paleolimnology 43, 625648.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Pan, B., Yi, C., Jiang, T., Dong, G., Hu, G., Jin, Y., 2012. Holocene lake-level changes of Linggo Co in central Tibet. Quaternary Geochronology 10, 117122.Google Scholar
Pelletier, J.D., Quade, J., Goble, R.J., Aldenderfer, M.S., 2011. Widespread hillslope gullying on the southeastern Tibetan Plateau: human or climate-change induced? Geological Society of America Bulletin 123, 19261938.Google Scholar
Perreault, C., Boulanger, M.T., Hudson, A.M., Rhode, D., Madsen, D.B., Olsen, J.W., Steffen, M.L., Quade, J., Glascock, M.D., Brantingham, P.J., 2016. Characterization of obsidian from the Tibetan Plateau by XRF and NAA. Journal of Archaeological Science: Reports 5, 392399.Google Scholar
Pigati, J.S., Quade, J., Shanahan, T.M., Haynes, C.V. Jr., 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 3345.Google Scholar
Pigati, J.S., Miller, D.M., Bright, J.E., Mahan, S.A., Nekola, J.C., Paces, J.B., 2011. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California. Geological Society of America Bulletin 123, 22242239.Google Scholar
Pigati, J.S., Rech, J.A., Quade, J., Bright, J., 2014. Desert wetlands in the geologic record. Earth-Science Reviews 132, 6781.Google Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and Late-Glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.Google Scholar
Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Ryslander, K.A., Fisher, T., 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, 343360.Google Scholar
Rech, J.A., Pigati, J.S., Quade, J., Betancourt, J.L., 2003. Re-evaluation of mid-Holocene deposits at Quebrada Puripica, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 207222.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rhode, D., Zhang, H., Madsen, D.B., Gao, X., Brantingham, P.J., Ma, H., Olsen, J.W., 2007. Epipaleolithic/early Neolithic settlements at Qinghai Lake, western China. Journal of Archaeological Science 34, 600612.Google Scholar
Rhode, D., 2016. A biogeographic perspective on early human colonization of the Tibetan Plateau. Archaeological Research in Asia. http://dx.doi.org/10.1016/j.ara.2016.01.004.Google Scholar
Roberts, H.M., Wintle, A.G., 2001. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol: application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews 20, 859863.Google Scholar
Shen, J., Liu, X., Wang, S., Ryo, M., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Slota, J.R., Jull, A.J.T., Linick, T.W., Toolin, L.J., 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29, 303306.Google Scholar
Springer, K.B., Manker, C.R., Pigati, J.S., 2015. Dynamic response of desert wetlands to abrupt climate change. Proceedings of the National Academy of Sciences 112, 1452214526.Google Scholar
Styron, R.H., Taylor, M.H., Sundell, K.E., Stockli, D.F., Oalmann, J.A.G., McAllister, A.T., Liu, D., Ding, L., 2013. Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: evolution of an active detachment system from structural mapping and (U-Th)/He thermochronology. Tectonics 32. http://dx.doi.org/10.1002/tect.20053.Google Scholar
Sun, Y., Lai, Z., Long, H., Liu, X., Fan, Q., 2010. Quartz OSL dating of archaeological sites in Xiao Qaidam Lake of the NE QinghaieTibetan Plateau and its implications for palaeoenvironmental changes. Quaternary Geochronology 5, 360364.Google Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276, 18211825.Google Scholar
Tian, L., Yao, T., MacClune, K., White, J.W.C., Schilla, A., Vaughn, B., Vachon, R., Ichiyanagi, K., 2007. Stable isotopic variations in west China: a consideration of moisture sources. Journal of Geophysical Research 112, D10112. http:// dx.doi.org/10.1029/2006JD007718.Google Scholar
Van Campo, E., Gasse, F., 1993. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (western Tibet) since 13,000 yr B.P. Quaternary Research 39, 300313.Google Scholar
Van Der Woerd, J., Tapponnier, P., Ryerson, F.J., Meriaux, A.S., Meyer, B., Gaudemer, Y., Finkel, R.C., Caffee, M.W., Zhao, G.G., Xu, Z.Q., 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International 148, 356388.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., Arya, N., 2010. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, 11381155.Google Scholar
Wünnemann, B., Yan, D.D., Ci, R., 2015. Morphodynamics and lake level variations at Paiku Co, southern Tibetan Plateau, China. Geomorphology 246, 489501.Google Scholar
Yi, M., Barton, L., Morgan, C., Liu, D., Chen, F., Zhang, Y., Pei, S., Ying, G., Wang, H., Gao, X., Bettinger, R.L., 2013. Microblade technology and the rise of serial specialists in north-central China. Journal of Anthropological Archaeology 32, 212223.Google Scholar
Yu, G., Tang, L., Yang, X., Ke, X., 2001. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecology and Biogeography 10, 503519.Google Scholar
Zhang, D.D., Li, S.H., 2002. Optical dating of Tibetan human hand- and footprints: an implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophysical Research Letters 29, 1072. http://dx.doi.org/10.1029/2001GL013749.Google Scholar