Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:31:53.025Z Has data issue: false hasContentIssue false

Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils

Published online by Cambridge University Press:  20 January 2017

Brigitte Talon*
Affiliation:
Centre d'études nordiques, Université Laval, Québec City (Qc), Canada G1K 7P4
Serge Payette*
Affiliation:
Centre d'études nordiques, Université Laval, Québec City (Qc), Canada G1K 7P4
Louise Filion
Affiliation:
Centre d'études nordiques, Université Laval, Québec City (Qc), Canada G1K 7P4
Ann Delwaide
Affiliation:
Centre d'études nordiques, Université Laval, Québec City (Qc), Canada G1K 7P4
*
1Current address: Institut Méditerranéen d'Écologie et de Paléoécologie, CNRS, UMR 6116, Université Paul Cézanne Aix-Marseille III, Case 461, 13397 Marseille cedex 20, France.
*Corresponding author. E-mail address: [email protected] (S. Payette).

Abstract

Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce (Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple (Acer saccharum) and birch (Betula spp.), and rare fragments of pine (Pinus cf. strobus) and white cedar (Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arseneault, D. (2001). Impact of fire behaviour on postfire forest development in a homogeneous boreal landscape. Canadian Journal of Forest Research 31, 13671374.Google Scholar
Bassini, F., and Becker, P. (1990). Charcoal's occurrence in soil depends on topography in Terra Firme forest near Manaus, Brazil. Biotropica 22, 420422.Google Scholar
Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P., and Lesieur, D. (2001). Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Canadian Journal of Forest Research 31, 384391.Google Scholar
Bormann, B.T., Spaltenstein, H., McClellan, M.H., Ugolini, F.C., Cromack, K., and Nay, S.M. (1995). Rapid soil development after windthrow disturbance in pristine forests. Journal of Ecology 83, 747757.Google Scholar
Brown, J.-L. (1977). Étude de la perturbation des horizons du sol par un arbre qui se renverse et de son impact sur la pédogenèse. Canadian Journal of Soil Science 57, 173186.Google Scholar
Brown, J.-L. (1979). Étude systématique de la variabilité d'un sol podzolique, le long d'une tranchée dans une érablière à bouleau jaune. Canadian Journal of Soil Science 59, 131146.CrossRefGoogle Scholar
Brown, J.-L., and Martel, Y. (1981). Intérêt des chablis dans l'étude des paléosols. Géographie Physique et Quaternaire 35, 8792.Google Scholar
Canham, C.D., and Loucks, O.L. (1984). Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology 65, 803809.Google Scholar
Carcaillet, C. (2001). Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. The Holocene 11, 231242.CrossRefGoogle Scholar
Carcaillet, C., and Richard, P.J.H. (2000). Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Climate Dynamics 16, 549559.Google Scholar
Carcaillet, C., and Talon, B. (1996). Stratigraphie et datations de charbons de bois dans les Alpes: quelques aspects taphonomiques. Géographie Physique et Quaternaire 50, 233244.Google Scholar
Carnelli, A.L., Theurillat, J.-P., Thinon, M., Vadi, G., and Talon, B. (2004). Past uppermost tree limit in the Central European Alps (Switzerland) based on soil and soil charcoal. The Holocene 14, 393405.Google Scholar
Clark, J.S. (1988). Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quaternary Research 30, 8191.Google Scholar
Clark, J.S., and Royall, P.D. (1996). Local and regional sediment charcoal evidence for fire regimes in presettlement north-eastern North America. Journal of Ecology 84, 365382.Google Scholar
Clinton, B.D., and Baker, C.R. (2000). Catastrophic windthrow in the southern Appalachians: characteristics of pits and mounds and initial vegetation responses. Forest Ecology and Management 126, 5160.Google Scholar
Cwynar, L.C. (1978). Recent history of fire and vegetation from laminated sediment of Greenleaf Lake, Algonquin Park, Ontario. Canadian Journal of Botany 56, 1021.Google Scholar
Filion, L. (1984a). )Analyse macrofossile et pollinique de paléosols de dunes en Hudsonie, Québec nordique. Géographie Physique et Quaternaire 38, 113122.Google Scholar
Filion, L. (1984b). )A relationship between dunes, fire and climate as recorded in the Holocene deposits of Québec. Nature 309, 543546.CrossRefGoogle Scholar
Filion, L. (1987). Holocene development of parabolic dunes in the central St. Lawrence, Québec. Quaternary Research 28, 196209.CrossRefGoogle Scholar
Filion, L., and Quinty, F. (1993). Macrofossil and tree-ring evidence for a long-term forest succession and mid-Holocene hemlock decline. Quaternary Research 40, 8997.CrossRefGoogle Scholar
Gavin, D.G. (2001). Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43, 2744.Google Scholar
Gavin, D.G., Brubaker, L.B., and Lertzman, K.P. (2003). Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 84, 186201.Google Scholar
Godron, M., and Forman, R.T.T. (1983). Landscape modification and changing ecological characteristics.Mooney, H.A., Godron, M. Disturbance and Ecosystems: Components of Response Springer-Verlag, Berlin, Germany.1228.Google Scholar
M.M., Grandtner (1966). La Végétation Forestière du Québec Méridional.Les Presses de l'Université Laval, Québec, Canada.Google Scholar
Heinselman, M.L. (1973). Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3, 329382.Google Scholar
Henry, J.D., and Swan, J.M.A. (1974). Reconstructing forest history from live and dead plant material: an approach to the study of forest succession in southwest New Hampshire. Ecology 55, 772783.CrossRefGoogle Scholar
Huston, M.A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge Univ. Press, Cambridge, United Kingdom.Google Scholar
Jacquiot, C. (1955). Atlas D'anatomie Du Bois Des Conifères. Centre technique du bois, Paris, France.Google Scholar
Jacquiot, C., Trenard, Y., and Dirol, D. (1973). Atlas D'anatomie Des Bois Des Angiospermes (Essences Feuillues). Centre technique du bois, Paris, France.2 tomesGoogle Scholar
Johnson, E.A. (1992). Fire and Vegetation Dynamics. Studies from the North American Boreal Forest. Cambridge Univ. Press, Cambridge, United Kingdom.Google Scholar
Kuhry, P. (1994). The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology 82, 899910.Google Scholar
Labelle, C., and Richard, P.J.H. (1981). Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345359.Google Scholar
Larsen, C.P.S. (1997). Spatial and temporal variations in boreal forest fire frequency in northern Alberta. Journal of Biogeography 24, 663673.Google Scholar
Lasalle, P., Martineau, F., and Chauvin, I. (1977). Morphologie, stratigraphie et déglaciation dans la région de Beauce-Monts Notre-Dame-Parc des Laurentides. Rapport DPV-516. Ministère des Ressources naturelles du Québec, Québec, Canada.174.Google Scholar
Lutz, H.J. (1940). Disturbance of forest soil resulting from the uprooting of trees. School of Forestry Bulletin 45, Yale University, USA.153.Google Scholar
Lutz, H.J., and Griswold, F.S. (1939). The influence of tree roots on soil morphology. American Journal of Science 237, 389400.Google Scholar
Niklasson, M., and Granström, A. ("m, 2000). )Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81, 14841499.CrossRefGoogle Scholar
Ohlson, M., and Tryterud, E. (2000). Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. The Holocene 10, 519525.CrossRefGoogle Scholar
Panshin, A.J., and de Zeeuw, C. (1980). Textbook of wood technology. Structure, Identification, Properties and Use of the Commercial Woods of the United States and Canada McGraw-Hill, New York, USA.Google Scholar
Patterson III, W.A., Edwards, K.J., and Maguire, D.J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6, 323.Google Scholar
Payette, S. (1992). Fire in the North American boreal forest.Shugart, H.H., Leemans, R., Bonan, G.B. Systems Analysis of the Global Boreal Forest Cambridge Univ. Press, Cambridge, United Kingdom.144169.Google Scholar
Payette, S., Morneau, C., Sirois, L., and Desponts, M. (1989). Recent fire history of the northern Québec biomes. Ecology 70, 656673.CrossRefGoogle Scholar
Payette, S., Filion, L., and Delwaide, A. (1990). Disturbance regime of a cold temperate forest as deduced from tree-ring patterns: the Tantaré Ecological Reserve, Quebec. Canadian Journal of Forest Research 20, 12281241.Google Scholar
Pickett, S.T.A., and White, P.S. (1985). The Ecology of Natural Disturbances and Patch Dynamics. Academic Press, New York, USA.Google Scholar
Piperno, D.R., and Becker, P. (1996). Vegetational history of a site in the central Amazon basin derived from phytolith and charcoal records from natural soils. Quaternary Research 45, 202209.Google Scholar
Pitkänen, A., Huttunen, P., Tolonen, K., and Jungner, H. ("nen et al., 2003). )Long-term fire frequency in the spruce-dominated forests of the Ulvinsalo strict nature reserve, Finland. Forest Ecology and Management 176, 305319.CrossRefGoogle Scholar
Rowe, J.S. (1972). Forest regions of Canada. Canadian Forest Service Publication vol. 1300, Environment, Canada, Ottawa, Ontario, Canada.Google Scholar
Schneour, E.A. (1966). Oxidation of graphitic carbon in certain soils. Science 151, 991992.Google Scholar
Spurr, S.H., and Barnes, B.V. (1980). Forest Ecology. John Wiley and Sons, New York, USA.Google Scholar
Stephens, E.P. (1956). The uprooting of trees: a forest process. Soil Science Society of America Proceedings 20, 113116.Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., and Spurk, M. (1998). INTCAL 98: radiocarbon age calibration 24000–0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Swain, A.M. (1980). Landscape patterns and forest history in the Boundary Waters Canoe area, Minnesota: a pollen study from Hug Lake. Ecology 61, 747754.Google Scholar
Talon, B., Carcaillet, C., and Thinon, M. (1998). Études pédoanthracologiques des variations de la limite supérieure des arbres au cours de l'Holocène dans les Alpes françaises. Géographie Physique et Quaternaire 52, 195208.Google Scholar
Thinon, M. (1978). La pédoanthracologie: une nouvelle méthode d'analyse phytochronologique depuis le Néolithique. Comptes Rendus de l'Académie des Sciences de Paris, Série D 287, 12031206.Google Scholar
Wein, R.W., Burzinski, M.P., Sreenivasa, B.A., and Tolonen, K. (1987). Bog profile evidence of fire and vegetation dynamics since 3000 years BP in the Acadian forest. Canadian Journal of Botany 65, 11801186.Google Scholar
Whelan, R.J. (1995). The Ecology of Fire. Cambridge Univ. Press, Cambridge, United Kingdom.Google Scholar
Whitlock, C., and Bartlein, P.J. (2004). Holocene fire activity as a record of past environmental change.Gillespie, A., Porter, S.C. Developments in Quaternary Science vol. 1, Elsevier Press, 479489.Google Scholar
Whitlock, C., and Millspaugh, S.H. (1996). Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. The Holocene 6, 715.Google Scholar
Wright, H.A., and Bailey, A.W. (1982). Fire Ecology: United States and Southern Canada. John Wiley and Sons, New York, USA.Google Scholar