Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-31T23:28:11.690Z Has data issue: false hasContentIssue false

Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis

Published online by Cambridge University Press:  13 February 2020

Ian A. Jorgeson
Affiliation:
Department of Anthropology, Southern Methodist University, P.O. Box 750235, Dallas, Texas75275, USA
Ryan P. Breslawski*
Affiliation:
Department of Anthropology, Southern Methodist University, P.O. Box 750235, Dallas, Texas75275, USA
Abigail E. Fisher
Affiliation:
Department of Anthropology, Southern Methodist University, P.O. Box 750235, Dallas, Texas75275, USA
*
*Corresponding author e-mail address: [email protected] (R.P. Breslawski).

Abstract

Fine-scale temporal processes, such as the synchronous deposition of organic materials, can be challenging to identify using 14C datasets. While some events, such as volcanic eruptions, leave clear evidence for synchronous deposition, synchroneity is more difficult to establish for other types of events. This has been a source of controversy regarding 14C dates associated with a hypothesized extraterrestrial impact at the Younger Dryas Boundary (YDB). To address this controversy, we first aggregate 14C measurements from Northern Hemisphere YDB sites. We also aggregate 14C measurements associated with a known synchronous event, the Laacher See volcanic eruption. We then use a Monte Carlo simulation to evaluate the magnitude of variability expected in a 14C dataset associated with a synchronous event. The simulation accounts for measurement error, calibration uncertainty, “old wood” effects, and laboratory measurement biases. The Laacher See 14C dataset is consistent with expectations of synchroneity generated by the simulation. However, the YDB 14C dataset is inconsistent with the simulated expectations for synchroneity. These results suggest that a central requirement of the Younger Dryas Impact Hypothesis, synchronous global deposition of a YDB layer, is extremely unlikely, calling into question the Younger Dryas Impact Hypothesis more generally.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Aura Tortosa, J.E., Miret i Estruch, C., Morales Pérez, J.V., 2008. Coves de Santa Maira (Castell de Castells, La Marina Alta, Alacant). Campaña de 2008. Saguntum (P.L.A.V.) 40, 227232.Google Scholar
Baales, M., Bittmann, F., Kromer, B., 1998. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken): Ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäeologisches Korrespoindenzblatt 28, 191204.Google Scholar
Baales, M., Jöris, O., Street, M., Bittmann, F., Weninger, B., Wiethold, J., 2002. Impact of the Late Glacial eruption of the Laacher See Volcano, Central Rhineland, Germany. Quaternary Research 58, 273288.10.1006/qres.2002.2379CrossRefGoogle Scholar
Baillie, M.G.L., 1991. Suck in and smear: Two related chronological problems for the 90s. Journal of Theoretical Archaeology 2, 1216.Google Scholar
Bement, L.C., Madden, A.S., Carter, B.J., Simms, A.R., Swindle, A.L., Alexander, H.M., Fine, S., Benamara, M., 2014. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA. Proceedings of the National Academy of Sciences of the United States of America 111, 17261731.10.1073/pnas.1309734111CrossRefGoogle ScholarPubMed
Bengtsson, H., Bravo, H.C., Gentleman, R., Hossjer, O., Jaffee, H., Jian, D., Langfelder, P., Hickey, P., 2018. matrixStats: Functions that apply to rows and columns of matrices (and to vectors). https://cran.rstudio.com/web/packages/matrixStats/index.html, accessed June 15, 2019.Google Scholar
Bergin, K.A., 2011. The archaeology of the Talega Site (CA-ORA-907), Orange County, California: Perspective on the prehistory of southern California. Prepared for the District of the US Army Corps of Engineers, Los Angeles.Viejo California Associates, Mission Viejo.Google Scholar
Bevan, A., Crema, E., 2018. rcarbon v1.1.3: Methods for calibrating and analyzing radiocarbon dates. https://cran.r-project.org/web/packages/rcarbon/index.html, accessed June 15, 2019.Google Scholar
Blaauw, M., Holliday, V.T., Gill, J.L., Nicoll, K., 2012. Age models and the Younger Dryas Impact Hypothesis. Proceedings of the National Academy of Sciences of the United States of America 109, E2240. https://doi.org/10.1073/pnas.1206143109CrossRefGoogle ScholarPubMed
Boaretto, E., Bryant, C., Carmi, I., Cook, G., Gulliksen, S., Harkness, D., Heinemeier, J., McClure, J., McGee, E., Naysmith, P., 2003. How reliable are radiocarbon laboratories? A report on the Fourth International Radiocarbon Inter-comparison (FIRI) (1998–2001). Antiquity 77, 146154.10.1017/S0003598X00061445CrossRefGoogle Scholar
Boslough, M., Nicoll, K., Holliday, V.T., Daulton, T.L., Meltzer, D., Pinter, N., Scott, A.C., et al. , 2012. Arguments and evidence against a Younger Dryas impact event. Geophysical Monograph Series 198, 1326.Google Scholar
Bronk Ramsey, C., 2008. Radiocarbon dating: Revolutions in understanding. Archaeometry 50, 249275.10.1111/j.1475-4754.2008.00394.xCrossRefGoogle Scholar
Bronk Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Bronk Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.10.1017/S0033822200034093CrossRefGoogle Scholar
Bunch, T.E., Hermes, R.E., Moore, A.M.T., Kennett, D.J., Weaver, J.C., Wittke, J.H., DeCarli, P.S., et al. , 2012. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences of the United States of America 109, E1903E1912.10.1073/pnas.1204453109CrossRefGoogle ScholarPubMed
Christen, J.A., Pérez, E.S., 2009. A new robust statistical model for radiocarbon data. Radiocarbon 51, 10471059.CrossRefGoogle Scholar
Daulton, T.L., Amari, S., Scott, A.C., Hardiman, M., Pinter, N., Anderson, R.S., 2017. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis: The nanodiamond evidence. Journal of Quaternary Science 32, 734.10.1002/jqs.2892CrossRefGoogle Scholar
Daulton, T.L., Pinter, N., Scott, A.C., 2010. No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event. Proceedings of the National Academy of Sciences of the United States of America 107, 1604316047.10.1073/pnas.1003904107CrossRefGoogle ScholarPubMed
Dean, J.S., 1978. Independent dating in archaeological analysis. Advances in Archaeological Method and Theory 1, 223255.10.1016/B978-0-12-003101-6.50013-5CrossRefGoogle Scholar
Egan, J., Staff, R., Blackford, J., 2015. A high-precision age estimate of the Holocene Plinian eruption of Mount Mazama, Oregon, USA. The Holocene 25, 10541067.10.1177/0959683615576230CrossRefGoogle Scholar
Firestone, R.B., 2009. The case for the Younger Dryas Extraterrestrial Impact Event: mammoth, megafauna and Clovis extinction. Journal of Cosmology 2, 256285.Google Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., et al. , 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences of the United States of America 104, 1601616021.10.1073/pnas.0706977104CrossRefGoogle ScholarPubMed
Frechen, J., 1952. Die Herkunft der spätglazialen Bimstuffe in mittel-und süddeutschen Mooren. Geologisches Jahrbuch 67, 209230.Google Scholar
Frechen, J., 1959. Die tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschritte in der Geologie von Rheinland und Westfalen 4, 363370.Google Scholar
Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312, 548.CrossRefGoogle ScholarPubMed
Goodyear, A.C., 2013. Update on the 2012–2013 activities of the Southeastern Paleoamerican Survey. Legacy 17, 1012.Google Scholar
Hajic, E.R., Mandel, R.D., Ray, J.H., Lopinot, N.H., 2007. Geoarchaeology of stratified Paleoindian deposits at the Big Eddy Site, Southwest Missouri, U.S.A. Geoarchaeology 22, 891934.10.1002/gea.20200CrossRefGoogle Scholar
Haynes, C.V., 2007. Radiocarbon dating at Murray Springs and Curry Draw. In: Haynes, C.V., Huckell, B.B. (Eds.), Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. University of Arizona Press, Tucson, pp. 229239.Google Scholar
Haynes, C.V., Boerner, J., Domanik, K., Lauretta, D., Ballenger, J., Goreva, J., 2010. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. Proceedings of the National Academy of Sciences of the United States of America 107, 40104015.Google ScholarPubMed
Haynes, V., Agogino, G., 1960. Geological significance of a new radiocarbon date from the Lindenmeier Site. The Denver Museum of Natural History Proceedings No. 9. The Denver Museum of Natural History, Denver.Google Scholar
Heine, K., 1993. Warmzeitliche Bodenbildung im Bölling/Alleröd im Mittelrheingebiet. Decheniana 146, 315324.Google Scholar
Holliday, V., Surovell, T., Johnson, E., 2016. A blind test of the Younger Dryas Impact Hypothesis. PLOS One 11, e0155470. https://doi.org/10.1371/journal.pone.0155470CrossRefGoogle ScholarPubMed
Holliday, V.T., Meltzer, D.J., 2010. The 12.9-ka ET Impact Hypothesis and North American Paleoindians. Current Anthropology 51, 575607.CrossRefGoogle Scholar
International Study Group, 1982. An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature 298, 619623.10.1038/298619a0CrossRefGoogle Scholar
Israde-Alcantara, I., Bischoff, J.L., Dominguez-Vazquez, G., Li, H.-C., DeCarli, P.S., Bunch, T.E., Wittke, J.H., et al. , 2012. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America 109, E738E747.CrossRefGoogle ScholarPubMed
Kennett, D., Kennett, J., West, G., Erlandson, J., Johnson, J., Hendy, I., West, A., Culleton, B., Jones, T., Staffordjr, T., 2008. Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the Ållerød–Younger Dryas boundary (13.0–12.9ka). Quaternary Science Reviews 27, 25302545.CrossRefGoogle Scholar
Kennett, D.J., Kennett, J.P., West, A., Mercer, C., Hee, S.S.Q., Bement, L., Bunch, T.E., Sellers, M., Wolbach, W.S., 2009a. Nanodiamonds in the Younger Dryas boundary sediment layer. Science 323, 9494.10.1126/science.1162819CrossRefGoogle Scholar
Kennett, D.J., Kennett, J.P., West, A., West, G. J., Bunch, T.E., Culleton, B.J., Erlandson, J.M., Hee, S.S.Q., Johnson, J.R., Mercer, C., 2009b. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proceedings of the National Academy of Sciences of the United States of America 106, 1262312628.CrossRefGoogle Scholar
Kennett, J.P., Kennett, D.J., Culleton, B.J., Aura Tortosa, J.E., Bischoff, J.L., Bunch, T.E., Daniel, I.R., et al. , 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. Proceedings of the National Academy of Sciences of the United States of America 112, E4344E4353.CrossRefGoogle ScholarPubMed
Kinzie, C.R., Que Hee, S.S., Stich, A., Tague, K.A., Mercer, C., Razink, J.J., Kennett, D.J., et al. , 2014. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 Cal BP. Journal of Geology 122, 475506.CrossRefGoogle Scholar
Kjær, K.H., Larsen, N.K., Binder, T., Bjørk, A.A., Eisen, O., Fahnestock, M.A., Funder, S., et al. , 2018. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances 4, eaar8173.https://doi.org/10.1126/sciadv.aar8173Google ScholarPubMed
Kletetschka, G., Vondrák, D., Hruba, J., Prochazka, V., Nabelek, L., Svitavská-Svobodová, H., Bobek, P., et al. , 2018. Cosmic-impact event in lake sediments from Central Europe postdates the Laacher See eruption and marks onset of the Younger Dryas. Journal of Geology 126, 561575.10.1086/699869CrossRefGoogle Scholar
Kromer, B., Spurk, M., Remmele, S., Barbetti, M., Joniello, V., 1998. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40, 351358.CrossRefGoogle Scholar
LeCompte, M.A., Goodyear, A.C., Demitroff, M.N., Batchelor, D., Vogel, E.K., Mooney, C., Rock, B.N., Seidel, A.W., 2012. Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas Impact Hypothesis. Proceedings of the National Academy of Sciences of the United States of America 109, E2960E2969.CrossRefGoogle ScholarPubMed
Lopinot, N.H., Ray, J.H., Conner, M.D., 1998. The 1997 Excavations at the Big Eddy Site (23CE426) in Southwest Missouri. Center for Archaeological Research Special Publication No. 2. Report submitted to the United States Army Corps of Engineers, Kansas City District. Southwest Missouri State University, Springfield.10.21236/ADA373957CrossRefGoogle Scholar
McElreath, R., 2017. rethinking v1.59: Statistical rethinking book package.CrossRefGoogle Scholar
Meltzer, D.J., Holliday, V.T., Cannon, M.D., Miller, D.S., 2014. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proceedings of the National Academy of Sciences of the United States of America 111, E2162E2171.10.1073/pnas.1401150111CrossRefGoogle ScholarPubMed
Moore, C.R., West, A., LeCompte, M.A., Brooks, M.J., Daniel, I.R., Goodyear, A.C., Ferguson, T.A., et al. , 2017. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Scientific Reports 7, 44031.CrossRefGoogle Scholar
Okuno, M., Shiihara, M., Masayuki, T., Nakamura, T., Han Kim, K., Domitsu, H., Moriwaki, H., Oda, M., 2010. AMS radiocarbon dating of Holocene tephra layers on Ulleung Island, South Korea. Radiocarbon 52, 14651470.CrossRefGoogle Scholar
Paquay, F.S., Goderis, S., Ravizza, G., Vanhaeck, F., Boyd, M., Surovell, T.A., Holliday, V.T., Haynes, C.V., Claeys, P., 2009. Absence of geochemical evidence for an impact event at the Bølling–Allerød/Younger Dryas transition. Proceedings of the National Academy of Sciences of the United States of America 106, 2150521510.CrossRefGoogle Scholar
Park, C., Schmincke, H.-U., 1997. Lake formation and catastrophic dam burst during the Late Pleistocene Laacher See eruption (Germany). Natur Wissenschaften 84, 521525.10.1007/s001140050438CrossRefGoogle Scholar
Parnell, A.C., Haslett, J., Allen, J.R.M., Buck, C.E., Huntley, B., 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27, 18721885.CrossRefGoogle Scholar
Pedersen, T.L., 2018. patchwork v0.0.1: The Composer of ggplots. https://github.com/thomasp85/patchwork, accessed January 10, 2019.Google Scholar
Petaev, M.I., Huang, S., Jacobsen, S.B., Zindler, A., 2013. Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proceedings of the National Academy of Sciences of the United States of America 110, 1291712920.CrossRefGoogle Scholar
Pigati, J.S., Latorre, C., Rech, J.A., Betancourt, J.L., Martinez, K.E., Budahn, J.R., 2012. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America 109, 72087212.CrossRefGoogle ScholarPubMed
Pino, M., Abarzúa, A.M., Astorga, G., Martel-Cea, A., Cossio-Montecinos, N., Navarro, R.X., Paz Lira, M., et al. , 2019. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports 9, 4413.10.1038/s41598-018-38089-yCrossRefGoogle ScholarPubMed
Pinter, N., Scott, A.C., Daulton, T.L., Podoll, A., Koeberl, C., Anderson, R.S., Ishman, S.E., 2011. The Younger Dryas impact hypothesis: a requiem. Earth-Science Reviews 106, 247264.10.1016/j.earscirev.2011.02.005CrossRefGoogle Scholar
Polach, H.A., 1974. Application of liquid scintillation spectrometers to radiocarbon dating. In: Stanley, P.E., Scoggins, B.A. (Eds.), Liquid Scintillation Counting: Recent Developments. Academic Press, New York and London, pp. 153171.Google Scholar
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rubin, M., Alexander, C., 1960. U.S. Geological Survey radiocarbon dates V. Radiocarbon 2, 129185.Google Scholar
Schiffer, M.B., 1986. Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science 13, 1330.CrossRefGoogle Scholar
Schmincke, H.-U., Park, C., Harms, E., 1999. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quaternary International 61, 6172.CrossRefGoogle Scholar
Schweitzer, H.-J., 1958. Entstehung und flora des Trasses im nördlichen Laachersee-Gebiet. E&G Quaternary Science Journal 9, 2848.Google Scholar
Scott, A.C., Pinter, N., Collinson, M.E., Hardiman, M., Anderson, R.S., Brain, A.P.R., Smith, S.Y., Marone, F., Stampanoni, M., 2010. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”: Origin of carbonaceous spherules. Geophysical Research Letters 37, L14302. https://doi.org/10.1029/2010GL043345Google Scholar
Scott, E.M., Aitchison, T.C., Harkness, D.D., Cook, G.T., Baxter, M.S., 1990. An overview of all three stages of the International Radiocarbon Intercomparison. Radiocarbon 32, 309319.10.1017/S0033822200012935CrossRefGoogle Scholar
Scott, E.M., Cook, G.T., Naysmith, P., 2010a. A report on phase 2 of the Fifth International Radiocarbon Intercomparison (VIRI). Radiocarbon 52, 846858.10.1017/S0033822200045938CrossRefGoogle Scholar
Scott, E.M., Cook, G.T., Naysmith, P., 2010b. The Fifth International Radiocarbon Intercomparison (VIRI): An assessment of laboratory performance in stage 3. Radiocarbon 52, 859865.CrossRefGoogle Scholar
Scott, E.M., Cook, G.T., Naysmith, P., Bryant, C., O'Donnell, D., 2007. A report on phase 1 of the 5th International Radiocarbon Intercomparison (VIRI). Radiocarbon 49, 409426.10.1017/S003382220004234XCrossRefGoogle Scholar
Scott, E.M., Harkness, D.D., Cook, G.T., 1998. Interlaboratory comparisons: Lessons learned. Radiocarbon 40, 331340.CrossRefGoogle Scholar
Stan Development Team, 2018. RStan 2.17.2: The R interface for Stan. https://mc-stan.org/, accessed Dec 20, 2017.Google Scholar
Steegen, S., Tuerlinckx, F., Gelman, A., Vanpaemel, W., 2016. Increasing transparency through a multiverse analysis. Perspectives in Psychological Science 11, 702712.CrossRefGoogle ScholarPubMed
Street, M.J., 1993. Analysis of Late Palaeolithic and Mesolithic Faunal Assemblages in the Northern Rhineland, Germany. PhD dissertation, University of Birmingham, Brimingham, United Kingdom.Google Scholar
Street, M.B., Baales, M., Weninger, B., 1994. Absolute Chronologie des späten Paläolithikums und des Frühmesolithikums im nördlichen Rheinland. Archäologisches Korrespondenzblatt 241994, 128.Google Scholar
Surovell, T.A., Holliday, V.T., Gingerich, J.A.M., Ketron, C., Haynes, C.V., Hilman, I., Wagner, D.P., Johnson, E., Claeys, P., 2009. An independent evaluation of the Younger Dryas Extraterrestrial Impact Hypothesis. Proceedings of the National Academy of Sciences of the United States of America 106, 1815518158.Google ScholarPubMed
Tankersley, K.B., Redmond, B.G., 1999. Radiocarbon dating of a Paleoindian projectile point from Sheriden Cave, Ohio. Current Research in the Pleistocene 16, 7677.Google Scholar
van den Bogaard, P., 1983. Die Eruption des Laacher See Vulkans. PhD dissertation, Ruhr-Universität, Bochum, Germany.Google Scholar
van den Bogaard, P., Schmincke, H.-U., 1985. Laacher See Tephra: A widespread isochronous Late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96, 15541571.2.0.CO;2>CrossRefGoogle Scholar
van der Hammen, T., van Geel, B., 2008. Charcoal in soils of the Allerød-Younger Dryas transition were the result of natural fires and not necessarily the effect of an extra-terrestrial impact. Netherlands Journal of Geosciences 87, 359361.CrossRefGoogle Scholar
van Hoesel, A., Hoek, W.Z., Braadbaart, F., van der Plicht, J., Pennock, G.M., Drury, M.R., 2012. Nanodiamonds and wildfire evidence in the Usselo Horizon postdate the Allerød-Younger Dryas boundary. Proceedings of the National Academy of Sciences of the United States of America 109, 76487653.CrossRefGoogle ScholarPubMed
van Hoesel, A., Hoek, W.Z., Pennock, G.M., Drury, M.R., 2014. The Younger Dryas impact hypothesis: A critical review. Quaternary Science Reviews 83, 95114.10.1016/j.quascirev.2013.10.033CrossRefGoogle Scholar
Walton, A., Trautman, M.A., Friend, J.P., 1961. Isotopes, Inc. radiocarbon measurements I. Radiocarbon 3, 4759.Google Scholar
Wang, Y., Amundson, R., Trumbore, S., 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45, 282288.CrossRefGoogle Scholar
Ward, G.K., Wilson, S.R., 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20, 1931.CrossRefGoogle Scholar
Waters, M.R., Stafford, T.W., Redmond, B.G., Tankersley, K.B., 2009. The age of the Paleoindian assemblage at Sheriden Cave, Ohio. American Antiquity 74, 107111.CrossRefGoogle Scholar
Wickham, H., 2007. Reshaping data with the reshape package. Journal of Statistical Software 21, 120.CrossRefGoogle Scholar
Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Springer, New York.Google Scholar
Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T., Hillman, G.C., et al. , 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences USA 110, E2088E2097.10.1073/pnas.1301760110CrossRefGoogle Scholar
Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Adedeji, V., Bunch, T.E., Firestone, R.B., French, T.A., et al. , 2018a. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 Years Ago. 1. Ice cores and glaciers. Journal of Geology 126, 165184.10.1086/695703CrossRefGoogle Scholar
Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., et al. , 2018b. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 Years Ago. 2. Lake, marine, and terrestrial sediments. Journal of Geology 126, 185205.10.1086/695704CrossRefGoogle Scholar
Wu, Y., Sharma, M., LeCompte, M.A., Demitroff, M.N., Landis, J.D., 2013. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proceedings of the National Academy of Sciences of the United States of America 110, E3557E3566.CrossRefGoogle Scholar
Supplementary material: File

Jorgeson et al. Supplementary Materials

Jorgeson et al. Supplementary Materials 1

Download Jorgeson et al. Supplementary Materials(File)
File 7.6 KB
Supplementary material: PDF

Jorgeson et al. Supplementary Materials

Jorgeson et al. Supplementary Materials 2

Download Jorgeson et al. Supplementary Materials(PDF)
PDF 7.6 MB
Supplementary material: File

Jorgeson et al. Supplementary Materials

Jorgeson et al. Supplementary Materials 3

Download Jorgeson et al. Supplementary Materials(File)
File 3.8 KB
Supplementary material: File

Jorgeson et al. Supplementary Materials

Jorgeson et al. Supplementary Materials 4

Download Jorgeson et al. Supplementary Materials(File)
File 86.2 KB