Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:34:39.204Z Has data issue: false hasContentIssue false

Radiocarbon Chronology of Holocene Hydrologic Changes in Northeastern Mali

Published online by Cambridge University Press:  20 January 2017

C. Hillaire-Marcel
Affiliation:
Département des Sciences de la Terre, Université du Québec à Montréal, B.P. 8888, Succ. A, Montréal, Quebec H3C 3P8, Canada
J. Riser
Affiliation:
Section Géographie, Faculté des Lettres, Université d'Avignon, 1 rue Violette, 84000 Avignon, France
P. Rognon
Affiliation:
ERA 684, Départment de Géographie Physique, Université P. et M. Curie, 4, Place Jussieu, 75230 Paris Cedex 05 France
N. Petit-Maire
Affiliation:
Laboratoire de Géologie du Quaternaire, Centre de Luminy, 13288 Marseille Cedex 2 France
J.C. Rosso
Affiliation:
Laboratoire de Géologie du Quaternaire, Centre de Luminy, 13288 Marseille Cedex 2 France
I. Soulie-Marche
Affiliation:
ERA 114, Paléobotanique, Faculté des Sciences, Place Eugène Bataillon, 34000 Montpellier, France

Abstract

A detailed chronology of hydrological changes that occurred in northeastern Mali during the Holocene is based on approximately 30 14C dates of molluscs which were collected from the lacustrine and paludal deposits of the Ine Sakane sand sea. The presence of cemented paleodunes indicates that the end of the Pleistocene was and arid period. This was followed by an early Holocene lacustrine episode (ca. 9500–6500 yr B.P.) during which numerous lakes occupied depressions formed in the Cretaceous limestones and between the sand ridges. These lakes reflect a significant rise in the water table. Between ca. 6500 and 5500 yr B.P. the lakes dried up, although the water table remained close to the ground surface in several areas. Calcareous concretions formed at the water table fringe during this time, thereby “fossilizing” some of the middle Holocene dunes. A second lacustrine episode is dated between ca. 5500 and 4500 yr B.P.; it corresponds to the establishment of numerous Neolithic settlements in the area. Arid conditions have developed since about 4500 yr B.P. to attain the conditions of the present day. The isotopic composition (18O and 13C) of the fauna reflects highly variable hydrological conditions. Groundwaters were recharged by precipitation which was occasionally very depleted in heavy oxygen (δ18O ≅ −13%.). Evaporation induced an enrichment in 18O; high concentrations characterize some lakes. The 13C content of fossil shells reflect: (1) species ecological requirements, (2) isotopic composition of the total inorganic dissolved carbon (TIDC) in groundwaters, and (3) the lake metabolism.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bottinga, I., (1968). Calculation of fractionation factors for carbon and oxygen isotope exchange in the system calcite-CO2-water. Journal of Chemistry and Physics 72 800808.CrossRefGoogle Scholar
Broecker, W.S., Olson, E.A., (1959). Lamont radiocarbon measurements. American Journal of Sciences Radiocarbon Supplement 1 111132.Google Scholar
Broecker, W.S., Olson, E.A., (1961). Lamont radiocarbon measurement. VIII. Radiocarbon 2 176204.Google Scholar
Clayton, R.N., (1961). Oxygen isotope fractionation between calcium carbonate and water. Journal of Chemistry and Physics 34 724726.Google Scholar
Craig, H., (1961). Isotopic variations in meteoric waters. Science 133 17021703.CrossRefGoogle ScholarPubMed
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus XVI 16 4 436467.Google Scholar
Dubief, J., (1963). Le clìmat du Sahara. vol. 2 Institut de Recherches Sahariennes, Alger.Google Scholar
Durand, A., Mathieu, P., (1980). Le Quaternaire supérieur sur la rive sud du Lac Tchad. Cahiers Orstom. Sér. Géol. XI 1.Google Scholar
Fontes, J.-Ch., Hillaire-Marcel, C., (1982). Isotopic paleohydrology of African tropical lakes. 11th INQUA Congress Moscow, USSR.Google Scholar
Fontes, J.-Ch., Pouchan, P., (1975). Les cheminées du Lac Abbé (TFAI): Stations hydroclimatiques de l'Holocéne. Comptes Rendus de l'Académie des Sciences, Paris, Series D 280 383386.Google Scholar
Gasse, F., Fontes, J.-Ch., Rognon, P., (1974). Variations hydrologiques et extension des lacs Holocènes du Désert Danakil. Palaeogeography, Palaeoclimatology, Palaeoecology 15 109148.Google Scholar
Gaven, C., Hillaire-Marcel, C., Petit-Maire, N., (1981). A Pleistocene lacustrine episode in southeastern Libya. Nature (London) 290 5802 131133.CrossRefGoogle Scholar
Hugot, G., (1977). Un secteur du Quaternaire lacustre mauritanien: Tichitt. Inst. Maurit. Rech. Sc. Nouakchott.Google Scholar
Munson, P.J., (1974). Late Holocene Climatic Chronology of the South-Western Sahara. 3rd. Biennal Meeting of Amer. Quatern. Assoc. Madison Wisc.Google Scholar
Petit-Maire, N., Riser, J., (1981). Holocene lake deposits and paleoenvironments inCentral Sahara, Northeastern Mali. Palaeogeography, Palaeoclimatology, Palaeoecology 35 4561and collaborators.CrossRefGoogle Scholar
Rognon, P., (1980). Une extension des déserts (Sahara et Moyen-Orient) au cours du Tardiglaciaire (18,000–10,000 ans BP). Revue de Géologie Dynamique et de Géographie Physique 22 313328.Google Scholar
Rubinson, M., Clayton, R.N., (1969). Carbon 13 fractionation between aragonite and calcite. Geochemica Cosmochemica Acta 33 9971002.CrossRefGoogle Scholar
Servant, M., (1973). Séquences Continentales et Variations Climatiques: Évolution du Bassin du Tchad au Cénozoique Superieur. Thèse Doctorat ès Sciences Paris.Google Scholar
Servant, M., Servant-Vildary, S., (1980). L'environnement quaternaire du bassin du Tchad. Williams, M.A.J., Faure, H., The Sahara and the Nile Balkema, Rotterdam 133162.Google Scholar