Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T12:42:48.680Z Has data issue: false hasContentIssue false

Quaternary evolution of the intermontane Val d'Agri Basin, Southern Apennines

Published online by Cambridge University Press:  20 January 2017

Irene Zembo*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via L. Mangiagalli 34, 20133 I-Milano, Italy
Laura Panzeri
Affiliation:
Dipartimento di Scienza dei Materiali and Centro Universitario per la Datazioni di Milano Bicocca (Cudam), Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 I-Milano, Italy
Anna Galli
Affiliation:
Dipartimento di Scienza dei Materiali and Centro Universitario per la Datazioni di Milano Bicocca (Cudam), Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 I-Milano, Italy CNR–INFM, Via R. Cozzi 53, 20125 I-Milano, Italy
Riccardo Bersezio
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via L. Mangiagalli 34, 20133 I-Milano, Italy CNR–IDPA, Via M. Bianco 9, 20131 I-Milano, Italy
Marco Martini
Affiliation:
Dipartimento di Scienza dei Materiali and Centro Universitario per la Datazioni di Milano Bicocca (Cudam), Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 I-Milano, Italy
Emanuela Sibilia
Affiliation:
Dipartimento di Scienza dei Materiali and Centro Universitario per la Datazioni di Milano Bicocca (Cudam), Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 I-Milano, Italy
*
Corresponding author. Fax: +39 02/50315494. E-mail address:[email protected] (I. Zembo).

Abstract

Optically Stimulated Luminescence (OSL) enables the chronology of the late Pleistocene evolution for the Val d'Agri intermontane basin of Southern Apennines to be defined in the frame of Mediterranean geodynamic and climate changes. Quartz sand from braided floodplain and alluvial fan depositional systems was analyzed using the coarse-grained, single-aliquot regenerative-dose (SAR) technique. The obtained optical ages are mostly consistent with other assessments (radiocarbon, tephrochronology) and stratigraphic constraints. OSL allows for the dating to 56–43 ka of an asymmetric subsidence stage that forced alluvial fan progradation, filling of a former lacustrine area, and development of an axial alluvial plain. A short period of Mediterranean-type pedogenesis, recorded at the top of the prograding-aggrading fans (OSL age bracket 43–32 ka), corresponds with MIS 3. During the subsequent stage of decline of vegetation cover, possibly corresponding to MIS 2, the latest progradation of alluvial fans occurred. The subsequent uplift and breakthrough of the basin threshold during the latest Pleistocene and Holocene induced entrenchment of the drainage network. The results presented here provide an example of the usefulness of OSL dating in intermontane continental settings where other geochronological constraints are scarce.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. Thermoluminescence Dating. (1985). Academic Press, London. 267 Google Scholar
Aitken, M.J. Optical dating: a non-specialist review. Quaternary Science Review (Quaternary Geochronology) 13, (1994). 503508.CrossRefGoogle Scholar
Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, A., Negendank, J.F.W., Nowaczyk, N.R., Oberhansli, H., Watts, W.A., Wulf, S., and Zolitschka, B. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, (1999). 740743.CrossRefGoogle Scholar
Bell, W.T. Attenuation factors to absorbed dose in quartz inclusions for thermoluminescence dating. Ancient TL 8, (1979). 213.Google Scholar
Bersezio, R., Zembo, I., Felletti, F., Giudici, M., and Miceli, A. Caratterizzazione dell'eterogeneità degli acquiferi pleistocenici del Bacino Intermontano dell'Alta Val d'Agri, dallo studio delle successioni affioranti. Colella, A. Le risorse idriche sotterranee dell' Alta Val d'Agri 3, (2003). Collana Editoriale dell'Autorità di Bacino Interregionale della Basilicata, Potenza. 5786.Google Scholar
Bersezio, R., Felletti, F., Giudici, M., Miceli, A., and Zembo, I. Aquifer analogues to assist modelling of groundwater flow: the Pleistocene aquifer complex of the Agri Valley (Basilicata). Valloni, E. Proceedings of the Italian National Workshop “Developments in Aquifer Sedimentology and Ground Water Flow Studies in Italy”, Memorie descrittive della Carta Geologica d'Italia, LXXVI, APAT, Firenze. (2007). 5166.Google Scholar
Bianca, M., and Caputo, R. Analisi morfotettonica ed evoluzione quaternaria della Val d'Agri, Appennino meridionale. Il Quaternario 16, (2003). 159170.Google Scholar
Bigi, G., Cosentino, D., Parotto, M., Sartori, R., and Scandone, P. Structural Model of Italy (scale 1:500.000), Sheet N. 4. (1990). Google Scholar
Blumetti, A.M., Coltorti, M., Dramis, F., and Farabollini, P. Due sezioni stratigrafiche nel Pleistocene medio della Conca di Norcia: implicazioni geomorfologiche e neotettoniche. Rendiconti della Societa` Geologica Italiana 13, (1990). 1726.Google Scholar
Bosi, C. Quaternary. Crescenti, V., D'Offizi, S., Merlino, S., and Sacchi, L. Geology of Italy. Special Volume of the Italian Geological Society for the IGC 32 Florence, Florence. (2004). 161188.Google Scholar
Carbone, S., Catalano, S., Lazzari, S., Lentini, F., and Monaco, C. Presentazione della carta geologica del bacino del Fiume Agri (Basilicata). Memorie della Società Geologica Italiana 47, (1991). 129143.Google Scholar
Carboni, S., Palomba, M., Vacca, A., and Carboni, G. Paleosols provide sedimentation, relative age, and climatic information about the alluvial fan of the River Tirso (Central-Western Sardinia, Italy). Quaternary International 156–157, (2006). 7996.Google Scholar
Cello, G. A quantitative structural approach to the study of active fault zones in the Appennines (Peninsular Italy). Journal of Geodynamics 29, (2000). 265292.Google Scholar
Cello, G., Gambini, R., Mattioni, L., Mazzoli, S., Read, A., Tondi, E., and Zucconi, V. Geological analysis of the High Agri Valley (Lucanian Appennines, Southern Italy). Memorie della Società Geologica Italiana 55, (2000). 149155.Google Scholar
Cello, G., Gambini, R., Mazzoli, S., Read, A., Tondi, E., and Zucconi, V. Fault zone characteristics and scaling properties of the Val d'Agri Fault System (Southern Apennines, Italy). Journal of Geodinamics 29, (2000). 293307.Google Scholar
Chappell, J., and Shackleton, N.J. Oxygen isotopes and sea level. Nature 324, (1986). 137140.Google Scholar
Chiesa, S., Coltorti, M., Cremaschi, M., Ferraris, M., and Prosperi, L. Loess sedimentation and Quaternary Deposits in the Marche Province. The loess in Northern and Central Italy: A Loess Basin Between the Alps and the Mediterranean Regions. Proceedings INQUA Excursion. (1990). Milano, 103130.Google Scholar
Cinque, A., Patacca, E., Scandone, P., and Tozzi, M. Quaternary kinematic evolution of the southern apennines. Relationships between surface geological features and deep lithospheric structures. Annali di geofisica XXXVI (1993). 249260.Google Scholar
Colella, A., Lapenna, V., and Rizzo, E. High-resolution imaging of the High Agri Valley basin (southern Italy) with electrical resistivity tomography. Tectonophysics 386, (2004). 2940.CrossRefGoogle Scholar
Coltorti, M., and Pieruccini, P. The last interglacial pedocomplexes in the litho- and morpho-stratigraphical framework of the central-northern Apennines (Central Italy). Qaternary International 156–157, (2006). 118132.CrossRefGoogle Scholar
Cremaschi, M. Paleosols and Vetusols in the Central Po plain (Northern Italy). (1987). Edizioni Unicopli, Milano.Google Scholar
Cremaschi, M. The loess in northern and central Italy: a loess basin between the Alps and the Mediterranean regions. Cremaschi, M. The Loess in Northern and Central Italy: A Loess Basin Between the Alps and the Mediterranean Region. Quaderni di Geodinamica Alpina e Quaternaria 1, (1990). 1519.Google Scholar
De Lorenzo, G. Reliquie di grandi laghi pleistocenici nell'Italia meridionale. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli IX - Serie 2, (1898). 127.Google Scholar
Di Niro, A., Giano, S.I., and Santangelo, N. Primi dati sull'evoluzione geomorfologica e sedimentaria del bacino dell'alta Val d'Agri (Basilicata). Studi Geologici Camerti, 1992, 1 (1992). 257263.Google Scholar
Di Niro, A., and Giano, S.I. Evoluzione geomorfologica del bordo orientale dell'alta Val d'Agri (Basilicata). Studi Geologici Camerti 2, (1995). 207218.Google Scholar
Doglioni, C., Harabaglia, P., Martinelli, G., Mongelli, F., and Zito, G. A geodynamic model of the Southern Apennines accretionary prisms. Terra Nova 8, (1996). 540547.Google Scholar
Duchaufour, P. Pédologie. Sol, Végétation, Environment. (1995). Masson, Paris. 324 Google Scholar
Dudal, R., Tavernier, R., and Osmond, O. Soil Map of Europe-1:2.500.000. Explanatory text and Map. (1966). FAO, Rome.Google Scholar
Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, (2003). 161165.Google Scholar
Erhart, H. La genèse des sols en tant que phénomène géologique. Esquisse d'une théorie géologique et géochimique. Biostasie et Rhéxistasie. (1956). Masson, Paris. 90 Google Scholar
Finke, P., Hartwich, R., Dudal, R., Ibanez, J., Jamagne, M., King, D., Montanarella, L., and Yassoglu, N. Georeferenced Soil Database for Europe. Manual of Procedures, Version 1.0: Rome, Italy, European Soil Bureau Scientific Committee. (1998). 171 Google Scholar
Galli, A., Panzeri, L., Martini, M., Sibilia, E., Vignola, P., Andò, S., Pini, R., Rossi, P.M., (2007). Optically stimulated luminescence dating of a stratigraphic Late Glacial-Holocene sequence in the Po plain (Bubano quarry, Bologna, Italy). In Press, Accepted Manuscript on Quaternary International http://dx.doi.org/10.1016/j.quaint.2007.11.001.Google Scholar
Giano, S.I., Lapenna, V., Piscitelli, S., and Schiattarella, M. Nuovi dati geologici e geofisici sull'assetto strutturale dei depositi continentali Quaternari dell'alta Val d'Agri (Basilicata). Il Quaternario 10, (1997). 589594.Google Scholar
Giano, S.I., Maschio, L., Alessio, M., Ferranti, L., Improta, S., and Schiattarella, M. Radiocarbon dating of active faulting in the Agri high valley, southern Italy. Journal of Geodynamics 29, 5 (2000). 371386.Google Scholar
International Commission on Stratigraphy, International Stratigraphic Guide. (1984). Geological Society of America, Boulder, Colorado. 214 Google Scholar
Keller, J. Explosive volcanic activity in the Mediterranean over the past 200,000 yrs as recorded in deep-sea sediments. Geological Society of America Bulletin 89, (1978). 591604.Google Scholar
La Penna, V., and Rizzo, E. Tomografie geoelettriche dipolari del bacino dell'Alta Val d'Agri. Colella, A. Le risorse idriche sotterranee dell' Alta Val d'Agri 3, (2003). Collana Editoriale dell'Autorità di Bacino Interregionale della Basilicata, Potenza. 87111.Google Scholar
Lang, A., Lindauer, S., Kuhn, R., and Wgner, G.A. Procedures used for optically and infrared stimulate luminescence dating of sediments in Heidelberg. Ancient TL 14, (1996). 711.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: development of a high resolution 0–300.000 year chronostratigraphy. Quaternary Research 27, (1987). 129.CrossRefGoogle Scholar
Maschio, L., Ferranti, L., and Burrato, P. Active extensional in Val d'Agri area, Southern Apennines, Italy: implications for the geometry of the seismogenic belt. Geophysical Journal International 162, (2005). 591609.CrossRefGoogle Scholar
Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., and Zöller, L. The luminescence dating laboratory at the University of Bonn: equipment and procedures. Ancient TL 20, (2002). 5361.Google Scholar
Mejdahl, V., and Winther-Nielsen, M. TL dating based on feldpsar inclusions. PACT 6, (1982). 426437.Google Scholar
Mejdahl, V. Thermoluminescence dating based on feldspars. Nuclear Tracks Radiation Measurements 10, (1985). 133136.Google Scholar
Mejdahl, V., and Christiansen, H.H. Procedures used for luminescence dating of sediments. Quaternary Geochronology. Quaternary Science Review 13, (1994). 403406.Google Scholar
Miall, A. The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. (1996). Springer, Toronto. 582 Google Scholar
Morandi, S., and Ceragioli, E. Integrated interpretation of seismic and resistivity images across the «Val d'Agri» graben (Italy). Annals of Geophysics 45, (2002). 259271.Google Scholar
Murray, A.S., and Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, (2000). 5773.Google Scholar
North American Commission on Stratigraphic Nomenclature North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin 67, (1983). 841857.Google Scholar
Pieri, P., Sabato, L., and Marino, M. The Plio-Pleistocene piggyback Sant'Arcangelo Basin: tectonic and sedimentary evolution. Memoires du Service geologique du Maroc 387, (1996). 195208.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Rizzo, E., Colella, A., La Penna, V., and Piscitelli, S. High-resolution imaging of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Physics and Chemistry of the Earth 29, (2004). 321327.CrossRefGoogle Scholar
Scarciglia, F., Terribile, F., Colombo, C., and Cinque, A. Late Quaternary climatic changes in Northern Cilento (Southern Italy): an integrated geomorphological and paleopedological study. Quaternary International 106–107, (2003). 141158.Google Scholar
Schiattarella, M. Quaternary tectonics of the Pollino Ridge, Calabria–Lucania boundary, southern Italy. Holdsworth, R.E., Strachan, R.A., Dewey, J.F. Continental Transpressional and Transtensional Tectonics. Geological Society 135, (1998). Special Pubblications, London. 341354.Google Scholar
Schiattarella, M., Di Leo, P., Beneduce, P., and Giano, S.I. Quaternary uplift vs tectonic loading: a case study from the Lucanian Appennine, southern Italy. Quaternary International 101–102, (2003). 239251.Google Scholar
Shackleton, N.J., Sanchez-Goni, M.F., Pailler, D., and Lancelot, Y. Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change 757, (2003). 15.Google Scholar
Stokes, S. Optical dating of young (modern) sediments using quartz: results from a selection of depositional environments. Quaternary Science Review 11, (1992). 153159.Google Scholar
Suc, J.P. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, (1984). 429432.Google Scholar
Tricart, J. Géomorphologie Applicable. (1978). Masson, Paris. 204 Google Scholar
Trombino, L. Il suolo come memoria storica dei mutamenti paleoambientali. Genesi e significato paleoclimatico delle “Terre Rosse” Plio-Pleistoceniche. (1998). Unpublished PhD Thesis, Università degli Studi di Milano, Milano. 242 Google Scholar
Van Kolfschoten, Th., Gibbard, P.L., and Knudsen, K.-L. The Eemian Interglacial: a global perspective. Introduction. Global and Planetary Change, 36, (2003). 147149.Google Scholar
Wintle, A.G., and Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, (2006). 369391.Google Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J.F.W. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122, (2004). 730.Google Scholar
Zembo, I. Evoluzione Quaternaria del Bacino Intermontano Alta Val d'Agri, Unpublished Ph.D Thesis. (2007). Università degli Studi di Milano, Milano. 191 Google Scholar
Zembo, I., Trombino, L., and Bersezio, R. Paleosols in a Pleistocene intermontane basin: a micromorphological approach to the study of the High Agri Valley (Southern Italy), European Geosciences Union General Assembly 2007, Vienna. Geophysical Research Abstracts 9, (2007). 11382 Google Scholar
Zembo, I., (2008). Stratigraphic architecture and Quaternary evolution of the Val d'Agri intermontane basin (Southern Apennines, Italy). In Revision, Accepted Manuscript on Sedimentary Geology.Google Scholar
Zembo, I., Vignola, P., Andò, S., Bersezio, R., and Vezzoli, L. Tephrochronology in the Quaternary Val d'Agri intermontane basin (Southern Apennines, Italy). International Journal of Earth Science, submitted (2008). Google Scholar