Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:05:58.142Z Has data issue: false hasContentIssue false

Postglacial paleoceanography and paleoenvironments in the northwestern Barents Sea

Published online by Cambridge University Press:  07 May 2019

Elena Ivanova*
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia
Ivar Murdmaa
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia
Anne de Vernal
Affiliation:
Geotop, Université du Québec à Montréal, H3C 3P8, Montréal, Québec, Canada
Bjørg Risebrobakken
Affiliation:
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007, Bergen, Norway
Alexander Peyve
Affiliation:
Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
Camille Brice
Affiliation:
Geotop, Université du Québec à Montréal, H3C 3P8, Montréal, Québec, Canada
Elvira Seitkalieva
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia
Sergey Pisarev
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia
*
*Corresponding author e-mail address: [email protected] (E.V. Ivanova).

Abstract

The Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ18O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aagaard-Sørensen, S., Husum, K., Hald, M., Knies, J., 2010. Paleoceanographic development in the SW Barents Sea during the Late Weichselian–Early Holocene transition. Quaternary Science Reviews 29, 115.Google Scholar
Barry, R.G., Serreze, M.C., Maslanik, J.A., Preller, R.H., 1993. The Arctic sea ice-climate system: observations and modeling. Reviews of Geophysics 31, 397422.Google Scholar
Bauch, H.A., 1999. Planktic Foraminifera in Holocene sediments from the Laptev Sea and the central Arctic Ocean: species distribution and paleobiogeographical implication. In: Kassens, H., Bauch, H.A., Dmitrenko, I.A., Ericken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L.A. (Eds.), Land-Ocean System in the Siberian Arctic: Dynamic and History. Springer-Verlag, Berlin, pp. 601613.Google Scholar
Belt, S.T., Cabedo-Sanz, P., Smik, L., Navarro-Rodriguez, A., Berben, S.M., Knies, J., Husum, K., 2015. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth and Planetary Science Letters 431, 127139.Google Scholar
Berben, S.M.P., Husum, K., Cabedo-Sanz, P., Belt, S.T., 2014. Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Climate of the Past 10, 181198.Google Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Blaauw, M., Christen, J., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Chauhan, T., Rasmussen, T.L., Noormets, R., 2016. Palaeoceanography of the Barents Sea continental margin, north of Nordaustlandet, Svalbard, during the last 74 ka. Boreas 45, 7699.Google Scholar
Chistyakova, N., Ivanova, E., Risebrobakken, B., Ovsepyan, E., Ovsepyan, Y., 2010. Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages. Oceanology 50, 573581.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.Google Scholar
Cormier, M.-A., Rochon, A., de Vernal, A., Gélinas, Y., 2016. Multi-proxy study of primary productivity and paleoceanographical conditions in northern Baffin Bay during the last centuries. Marine Micropaleontology 127, 110.Google Scholar
de Vernal, A., Bilodeau, G., Henry, M., 2010. Micropaleontological Preparation Techniques and Analyses. Cahier du Geotop No. 3. https://www.geotop.ca/sites/default/files/fichiers/Micropal_Methods_2010.pdf.Google Scholar
de Vernal, A., Henry, M., Matthiessen, J., Mudie, P.J., Rochon, A., Boessenkool, K., Eynaud, F., et al. , 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new ‘n = 677’ data base and application for quantitative palaeoceanographic reconstruction. Journal of Quaternary Science 16, 681699.Google Scholar
de Vernal, A., Rochon, A., Fréchette, B., Henry, M., Radi, T., Solignac, S., 2013. Reconstructing past sea ice cover of the Northern Hemisphere from dinocyst assemblages: status of the approach. Quaternary Science Reviews 79, 122134.Google Scholar
Dowdeswell, J.A., Siegert, M.J., 1999. Ice-sheet numerical modelling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins. Geological Society of America Bulletin 111, 10801097.Google Scholar
Duplessy, J.C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L., Levitan, M., Murdmaa, I., Paterne, M., 2005. Paleoceanography of the Barents Sea during the Holocene. Paleoceanography 20, PA4004.Google Scholar
Duplessy, J.C., Ivanova, E., Murdmaa, I., Paterne, M., Labeyrie, L., 2001. Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30, 216.Google Scholar
Eldevik, T., Risebrobakken, B., Bjune, A.E., Andersson, C., Birks, H.J.B., Dokken, T.M., Drange, H., et al., 2014. A brief history of climate – the northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews 106, 225246.Google Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Feyling-Hanssen, R.W., Jørgensen, J.A., Knudsen, K.L., Andersen, A-L.L., 1971. Late Quaternary foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Bulletin of the Geological Society of Denmark 21, 67317.Google Scholar
Hald, M., Ebbesen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Ringstad Olsen, L., Vorren, T.O., 2004. Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, 20752088.Google Scholar
Hald, M., Kolstad, V., Polyak, L., Forman, S.L., Herlihy, F.A., Ivanov, G., Nesheretov, A., 1999. Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna Trough, Eurasian Arctic Ocean margin. Palaeogeography, Palaeoclimatology, Palaeoecology 146, 229249.Google Scholar
Hald, M., Korsun, S., 1997. Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. Journal of Foraminiferal Research 27, 101122.Google Scholar
Hamel, D., de Vernal, A., Gosselin, M., Hillaire-Marcel, C., 2002. Organic-walled microfossils and geochemical tracers: sedimentary indicators of productivity changes in the North Water and northern Baffin Bay (High Arctic) during the last centuries. Deep Sea Research Part II: Topical Studies in Oceanography 49, 52775295.Google Scholar
Hayward, B.W., Cedhagen, T., Kaminski, M., Gross, O., 2017. World Foraminifera Database (accessed on April 12, 2017). http://www.marinespecies.org/aphia.php?p=taxdetails&id=764015.Google Scholar
Head, M.J., Harland, R., Matthiessen, J., 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science 16, 621636.Google Scholar
Hebbeln, D., Dokken, T., Andersen, E.S., Hald, M., Elverhøi, A., 1994. Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357359.Google Scholar
Hill, V.J., Matrai, P.A., Olson, E., Suttles, S., Steele, M., Codispoti, L.A., Zimmerman, R.C., 2013. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates. Progress Oceanography 110, 107125.Google Scholar
Hillaire-Marcel, C., de Vernal, A., 2008. Stable isotope clue to episodic sea-ice formation in the glacial North Atlantic. Earth and Planetary Science Letters 268, 143150.Google Scholar
Hillaire-Marcel, C., Maccali, J., Not, C., Poirier, A., 2013. Geochemical and isotopic tracers of arctic sea ice sources and export with special attention to the Younger Dryas interval. Quaternary Science Reviews 79, 184190.Google Scholar
Hogan, K.A., Dowdeswell, J.A., Hillenbrand, C.-D., Ehrmann, W., Noormets, R., Wacker, L., 2017. Subglacial sediment pathways and deglacial chronology of the northern Barents Sea Ice Sheet. Boreas 46, 750771.Google Scholar
Hogan, K.A., Dowdeswell, J.A., Noormets, R., Evans, J., Ó Cofaigh, C., 2010a. Geophysical and geological evidence for full-glacial ice flow and retreat of the Late Weichselian Ice Sheet from the waters around Kong Karls Land, eastern Svalbard. Quaternary Science Reviews 29, 35633582.Google Scholar
Hogan, K.A., Dowdeswell, J.A., Noormets, R., Evans, J., Ó Cofaigh, C., Jakobsson, M., 2010b. Submarine landforms and ice-sheet flow in the Kvitøya Trough, northwestern Barents Sea. Quaternary Science Reviews 29, 35453562.Google Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.Google Scholar
Husum, K., Hald, M., 2004. Modern foraminiferal distribution in the subarctic Malangen fjord and adjoining shelf, northern Norway. Journal of Foraminiferal Research 34, 3448.Google Scholar
Ivanova, E.V., 2009. Influence of the global thermohaline circulation on paleoceanographic events in the Eurasian Arctic Seas. In: The Global Thermohaline Paleocirculation. Springer, Dordrecht, the Netherlands, pp. 61106.Google Scholar
Ivanova, E.V., Murdmaa, I.O., Duplessy, J.-C., Paterne, M., 2002. Late Weichselian to Holocene paleoenvironments in the Barents Sea. Global and Planetary Change 34, 209218.Google Scholar
Ivanova, E.V., Murdmaa, I.O., Emelyanov, E.M., Seitkalieva, E.A., Radionova, E.P., Alekhina, G.N., Sloistov, S.M., 2016. Postglacial paleoceanographic environments in the Barents and Baltic seas. Oceanology 56, 118130.Google Scholar
Ivanova, E.V., Ovsepyan, E.A., Risebrobakken, B., Vetrov, A.A., 2008. Downcore distribution of living calcareous foraminifera and stable isotopes in the western Barents Sea. Journal of Foraminiferal Research 38, 337356.Google Scholar
Jansen, E., Bleil, U., Henrich, R., Kringstad, L., Slettmark, B., 1988. Paleoenviromental changes in the Norwegian Sea and the northeast Atlantic during the last 2.8 m.y.: Deep Sea Drilling Project/Ocean Drilling Program Sites 610, 642, 643 and 644. Paleoceanography and Paleoclimatology 3, 563581.Google Scholar
Keigwin, L.D., Klotsko, S., Zhao, N., Reilly, B., Giosan, L., Driscoll, N.W., 2018. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nature Geoscience 11, 599604.Google Scholar
Klitgaard-Kristensen, D., Rasmussen, T.L., Koç, N, 2013. Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years – new constraints on the last deglaciation of the Svalbard–Barents Sea Ice Sheet. Boreas 42, 798813.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.Google Scholar
Lauritzen, Ø., Ohta, Y., 1984. Geological Map of Svalbard 1:500 000. Sheet 4G, Nordaustlandet. Skrifter No. 154D. Norsk Polarinstitutt, Oslo, Norway.Google Scholar
Lind, S., Ingvaldsen, R., 2012. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Research Part I: Oceanographic Research Papers 62, 7088.Google Scholar
Lisitzin, A.P., 2002. Sea Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer, Berlin.Google Scholar
Lubinski, D.J., Polyak, L., Forman, S.L., 2001. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes. Quaternary Science Reviews 20, 18511879.Google Scholar
Mackensen, A., Hald, M., 1988. Cassidulina teretis Tappan and C. laevigata d'Orbigny: their modern and Late Quaternary distribution in northern seas. Journal of Foraminiferal Research 18, 1624.Google Scholar
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A.K., Høisæter, T., 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews 25, 32283245.Google Scholar
Marcott, S.A., Clark, P., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., et al. , 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences of the United States of America 108, 1341513419.Google Scholar
McManus, J.F., Francois, R., Gherardi, J-M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.Google Scholar
Midttun, L., 1985. Formation of dense bottom water in the Barents Sea. Deep Sea Research Part A: Oceanographic Research Papers 32, 12331241.Google Scholar
Mignot, J., Ganopolski, A., Levermann, A., 2007. Atlantic subsurface temperatures: response to a shut-down of the overturning circulation and consequences for its recovery. Journal of Climate 20, 48844898.Google Scholar
Müller, J., Stein, R., 2014. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts. Earth and Planetary Science Letters 403, 446455.Google Scholar
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., Jansen, E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternary Science Reviews 47, 114.Google Scholar
Murdmaa, I., Ivanova, E., Duplessy, J.-C., Levitan, M., Khusid, T., Bourtman, M., Alekhina, G., Alekseeva, T., Belousov, M., Serova, V., 2006. Facies system of the central and Eastern Barents Sea since the last glaciation to present. Marine Geology 230, 275303.Google Scholar
Murton, J.B., Bateman, M.D., Dallimore, S.R., Teller, J.T., Yang, Z., 2010. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740743.Google Scholar
North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Novitsky, V.P., 1961. Permanent currents of the northern Barents Sea. Trudy Gosudarstvennogo Okeanograficheskogo Instituta 64, 132.Google Scholar
Ovsepyan, Y.S., Taldenkova, E.E., Bauch, H.A., Kandiano, E.S., 2015. Late Pleistocene-Holocene events on the continental slope of the Laptev Sea: evidence from benthic and planktonic foraminiferal assemblages. Stratigraphy and Geological Correlation 23, 645660.Google Scholar
Ozhigin, V., Ingvaldsen, R.B., Loeng, H., Boitsov, V., Karsakov, A., 2011. Introduction to the Barents Sea. In: Jakobsen, T., Ozhigin, V. (Eds.), The Barents Sea: Ecosystem, Resources, Management; Half a Century of Russian-Norwegian Cooperation. Tapir Academic Press, Trondheim, Norway, pp. 3976.Google Scholar
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P.L., Stroeven, A.P., Shackleton, C., Winsborrow, M., Heyman, J., Hall, A.M., 2017. Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews 169, 148172.Google Scholar
Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.Google Scholar
Pfirman, S.L., Bauch, D., Gammelsrød, T., 1994. The northern Barents Sea: water mass distribution and modification. In: Johannessen, O.M., Muench, R.D., Overland, J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume. Geophysical Monograph Series, Vol. 85. American Geophysical Union, Washington, DC, pp. 7794.Google Scholar
Polyak, B.G., Khutorskoy, M.D., 2018. Heat flow from the Earth interior as indicator of deep processes. Georesursy = Georesources 20, 366376.Google Scholar
Polyak, L., Korsun, S., Febo, L.A., Stanovoy, V., Khusid, T., Hald, M., Paulsen, B.E., Lubinski, D.J., 2002. Benthic foraminiferal assemblages from the southern Kara Sea, a river influenced Arctic marine environment. Journal of Foraminiferal Research 32, 252273.Google Scholar
Polyak, L., Solheim, A., 1994. Late- and postglacial environments in the northern Barents Sea, west of Franz Josef Land. Polar Research 13, 197207.Google Scholar
Poole, D.A.R., 1994. Neogene and Quaternary Paleoenvironment on the North Norwegian Shelf. Institute of Biology and Geology, University of Tromsø, Tromsø, Norway.Google Scholar
Rasmussen, T.L., Forwick, M., Mackensen, A., 2012. Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Marine Micropaleontology 94–95, 8090.Google Scholar
Rasmussen, T.L., Thomsen, E., 2008. Warm Atlantic surface water inflow to the Nordic Seas 34–10 calibrated ka B.P. Paleoceanography 23, PA1201.Google Scholar
Rasmussen, T.L., Thomsen, E., 2013. Pink marine sediments reveal rapid ice melt and Arctic meltwater discharge during Dansgaard–Oeschger warmings. Nature Communications 4:2849.Google Scholar
Rasmussen, T.L., Thomsen, E., Ślubowska, M.A., Jessen, S., Solheim, A., Koç, N., 2007. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research 67, 100114.Google Scholar
R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Risebrobakken, B., Dokken, T., Smedsrud, L.H., Andersson, C., Jansen, E., Moros, M., Ivanova, E.V., 2011. Early Holocene temperature variability in the Nordic Seas: the role of oceanic heat advection versus changes in orbital forcing. Paleoceanography 26, PA4206.Google Scholar
Risebrobakken, B., Moros, M., Ivanova, E., Chistyakova, N., Rosenberg, R., 2010. Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20, 609621.Google Scholar
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., Head, M.J., 1999. Distribution of Dinoflagellate Cyst Assemblages in Surface Sediments from the North Atlantic Ocean and Adjacent Basins and Quantitative Reconstruction of Sea Surface Parameters. Contribution Series 35. American Association of Stratigraphic Palynologists, Dallas, TX.Google Scholar
Rudels, B., Anderson, L.G., Jones, E.P., 1996. Formation and evolution of the surface mixed layer and the halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans 101, 88078821.Google Scholar
Sarnthein, M., Van Kreveld, S., Erlenkauser, H., Grootes, P.M., Kucera, M., Pflaumann, U., Schulz, M. 2003. Centennial-to-millennial scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, 447461.Google Scholar
Schlitzer, R., 2015. Ocean Data View (accessed 14.08.2017). http://odv.awi.de.Google Scholar
Ślubowska, M.A., Koç, N., Rasmussen, T.L., Klitgaard Klitgaard-Kristensen, D., 2005. Changes in the flow of Atlantic Water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20, PA4014.Google Scholar
Ślubowska-Woldengen, M., Rasmussen, T.L., Koç, N., Klitgaard-Klitgaard-Kristensen, D., Nilsen, F., Solheim, A., 2007. Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quaternary Science Reviews 26, 463478.Google Scholar
Smedsrud, L.H., Esau, I., Ingvaldsen, R.B., Eldevik, T., Haugan, P.M., Li, C., Lien, V.S., et al. , 2013. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics 51, 415449.Google Scholar
Spielhagen, R.F., Erlenkeuser, H., Siegert, C., 2005. History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation. Global and Planetary Change 48, 187207.Google Scholar
Sternal, B., Szczuciński, W., Forwick, M., Zajaczkowski, M., Lorenc, S., Przytarska, J., 2014. Postglacial variability in near-bottom current speed on the continental shelf off south-west Spitsbergen. Journal of Quaternary Science 29, 767777.Google Scholar
Stuiver, M., Reimer, J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W., 2018, CALIB 7.1 (accessed July 11, 2018). http://calib.org.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., et al. , 2004. Late Quaternary ice-sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.Google Scholar
Taldenkova, E., Bauch, H.A., Stepanova, A., Ovsepyan, Y., Pogodina, I., Klyuvitkina, T., Nikolaev, S., 2012. Benthic and planktic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times. Marine Micropaleontology 96–97, 1328.Google Scholar
Tantsyura, A.I., 1959. On the currents of the Barents Sea. [In Russian.] Transactions of the Polar Scientific Research Institute of Marine Fisheries and Oceanography – N.M. Knipovich (PINRO) 11, 3553.Google Scholar
Tarasov, L., Peltier, W.R., 2005. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662665.Google Scholar
Werner, K., Spielhagen, R.F., Bauch, D., Christian Hass, H., Kandiano, E., 2013. Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 29, 283295.Google Scholar
Wollenburg, J.E., Knies, J., Mackensen, A., 2004. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 209238.Google Scholar
Xiao, X., Stein, R., Fahl, K., 2015. MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: reconstruction from biomarkers. Paleoceanography 30, 969983.Google Scholar
Zayonchek, A.V., Mazarovich, A.O., Lavrushin, V.Y., Sokolov, S.Y., Khutorskoi, M.D., Abramova, A.S., Aliulov, R. K., et al. , 2009. Geological-geophysical studies in the northern Barents Sea and on the continental shelf of the Arctic Ocean during Cruise 25 of the R/V Akademik Nikolay Strakhov. Doklady Earth Sciences 427, 740745.Google Scholar
Supplementary material: File

Ivanova et al. supplementary material

Ivanova et al. supplementary material 1

Download Ivanova et al. supplementary material(File)
File 7 KB
Supplementary material: File

Ivanova et al. supplementary material

Ivanova et al. supplementary material 2

Download Ivanova et al. supplementary material(File)
File 18.9 KB