Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T13:28:10.606Z Has data issue: false hasContentIssue false

Pleistocene deep-sea ostracods from the Oki Ridge, Sea of Japan (IODP Site U1426) and condition of the intermediate water

Published online by Cambridge University Press:  22 September 2017

Tatsuhiko Yamaguchi*
Affiliation:
Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku, Kochi 783-8502, Japan
Kentaro Kuroki
Affiliation:
Department of Geology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
Katsura Yamada
Affiliation:
Department of Geology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
Takuya Itaki
Affiliation:
Institute for Marine Resources and Environment, Geological Survey of Japan, AIST, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan
Kaoru Niino
Affiliation:
Department of Earth and Environmental Sciences, Yamagata University, Yamagata 990-8560, Japan
Isao Motoyama
Affiliation:
Department of Earth and Environmental Sciences, Yamagata University, Yamagata 990-8560, Japan
*
*Corresponding author at: Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku, Kochi 783-8502, Japan. E-mail address: [email protected] (T. Yamaguchi).

Abstract

The Sea of Japan (also termed the East Sea) has a circulation system isolated from the Pacific Ocean and East China Sea. The East Asian winter monsoon drives the circulation system and cools the Tsushima Warm Current (TWC) to form the Japan Sea Intermediate–Proper Water (JSIPW). The intermediate water conveys oxygen to deep-sea floors, which is available for benthic animals. During the Pliocene (3.5–2.8 Ma), Temperate Intermediate Water (TIW) was formed under the weak winter monsoon, and extinct ostracod TIW taxa were found. Little is known about early Pleistocene intermediate water and the extinction mode of benthic ostracods. We studied radiolarians and ostracods from deep-sea sediments between 2.0 and 1.3 Ma (Marine Oxygen Isotope Stage [MIS] 77 to MIS 41) at Integrated Ocean Drilling Program Site U1426, Sea of Japan. The ostracod faunas contained TIW and JSIPW taxa. The radiolarian subtropical-water taxa and the JSIPW ostracods indicate a small influx of the TWC and the JSIPW. The TIW occasionally expanded to the middle bathyal zone. By analogy with the relationship between the modern JSIPW and winter monsoon, weak winter monsoon possibly caused gentle temperature gradients in the water column and the expansion of the TIW. The JSIPW taxa expanded their ranges into the deep sea during interglacial periods.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ao, H., Dekkers, M.J., Qin, L., Xiao, G., 2011. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews 30: 15601575.Google Scholar
Ayress, M., Barrows, T., Passlow, V., Whatley, R., 1999. Neogene to Recent species of Krithe (Crustacea: Ostracoda) from the Tasman Sea and off southern Australia with description of five new species. Records of the Australian Museum 51: 122.Google Scholar
Braeckman, U., Vanaverbeke, J., Vincx, M., van Oevelen, D., Soetaert, K., 2013. Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS One 8: e59289. http://dx.doi.org/10.1371/journal.pone.0059289.CrossRefGoogle ScholarPubMed
Chang, F., Zhouang, L., Li, T., Yan, J., Cao, Q., Cang, S., 2003. Radiolarian fauna in surface sediments of the northeastern East China Sea. Marine Micropaleontology 48: 173194.Google Scholar
Coles, G.P., Whatley, R.C., Moguilevsky, A., 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology 37: 71120.Google Scholar
Cronin, T.M., Boomer, I., Dwyer, G.S., Rodriguez-Lazaro, J., 2002. Ostracoda and paleoceanography. In: Holmes, J., Chivas, A.R. (Eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Washington, DC, pp. 99119.Google Scholar
Cronin, T.M., Ikeya, N., 1987. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropalaeontology 6: 6588.CrossRefGoogle Scholar
Cronin, T.M., Kitamura, A., Ikeya, N., Watanabe, M., Kamiya, T., 1994. Late Pliocene climate change 3.4-2.3 Ma: paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 437455.CrossRefGoogle Scholar
Delucchi, K.L., Bostrom, A., 2004. Methods for analysis of skewed data distributions in psychiatric clinical studies: working with many zero values. American Journal of Psychiatry 161: 11591168.Google Scholar
Dingle, R.V., 1995. Continental shelf upwelling and benthic Ostracoda in the Benguela System (southeastern Atlantic Ocean). Marine Geology 122: 207225.CrossRefGoogle Scholar
Domitsu, H., Oda, M., 2005. Japan Sea planktic foraminifera in surface sediments: geographical distribution and relationships to surface water mass. Paleontological Research 9: 255270.Google Scholar
Gallagher, S.J., Kitamura, A., Iryu, Y., Itaki, T., Koizumi, I., Hoiles, P.W., 2015. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Progress in Earth and Planetary Science 2: 17. http://dx.doi.org/10.1186/s40645-015-0045-6.Google Scholar
Gamo, T., Momoshima, N., Tolmachyov, S., 2001. Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophysical Research Letters 28: 41434146.CrossRefGoogle Scholar
Hamano, Y., Krumsiek, K.A.O., Vigliotti, L., Wippern, J.J.M., 1992. Pliocene-Pleistocene magnetostratigraphy of sediment cores from the Japan Sea. In: Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 2: Scientific Results. Ocean Drilling Program, College Station, TX, pp. 969–982.Google Scholar
Herguera, J.C., Berger, W.H., 1991. Paleoproductivity from benthic foraminifera abundance: glacial to postglacial change in the west-equatorial Pacific. Geology 19: 11731176.2.3.CO;2>CrossRefGoogle Scholar
Hyun, S., Bahk, J.J., Suk, B.-C., Park, B.-K., 2007. Alternative modes of Quaternary pelagic biosiliceous and carbonate sedimentation: a perspective from the East Sea (Japan Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 247: 8899.Google Scholar
Ikehara, K., 1991. Modern sedimentation of San’in district in the southern Japan Sea. In: Takano, K. (Ed.), Oceanography of Asian Marginal Seas. Elsevier, Amsterdam, pp. 143162.Google Scholar
Ikehara, K., 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science 2: 36. http://dx.doi.org/10.1186/s40645-015-0068-z.Google Scholar
Ingle, J.C.J., Suyehiro, K., von Breymann, M.T. (Eds.), 1990). Proceedings of the Ocean Drilling Program. Vol. 128, Initial Reports. Ocean Drilling Program, College Station, TX.Google Scholar
Irizuki, T., Kusumoto, M., Ishida, K., Tanaka, Y., 2007. Sea-level changes and water structures between 3.5 and 2.8 Ma in the central part of the Japan Sea borderland: analyses of fossil Ostracoda from the Pliocene Kuwae Formation, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 421443.CrossRefGoogle Scholar
Itaki, T., 2007. Historical changes of deep-sea radiolarians in the Japan Sea during the last 640 ka. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 82: 4351.Google Scholar
Itaki, T., 2016. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events. Progress in Earth and Planetary Science 3: 11. http://dx.doi.org/10.1186/s40645-016-0087-4.Google Scholar
Itaki, T., Ikehara, K., Motoyama, I., Hasegawa, S., 2004. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians. Palaeogeography, Palaeoclimatology, Palaeoecology 208: 263278.CrossRefGoogle Scholar
Itaki, T., Komatsu, N., Motoyama, I., 2007. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 ka in the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 115130.Google Scholar
Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111: 111129.CrossRefGoogle Scholar
Kanda, Y., 2013. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48: 452458.CrossRefGoogle ScholarPubMed
Kato, M., 1992. Benthic foraminifers from the Japan Sea: Leg 128. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., (Eds.), Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 1: Scientific Results. Ocean Drilling Program, College Station, TX, pp. 365–392.Google Scholar
Kheradyar, T., 1992. Pleistocene planktonic foraminiferal assemblages and paleotemperature fluctuations in Japan Sea, Site 798. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., (Eds.), Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 1: Scientific Results. College Station, TX, pp. 457–470.Google Scholar
Kitamura, A., 2009. Early Pleistocene evolution of the Japan Sea Intermediate Water. Journal of Quaternary Science 24: 880889.Google Scholar
Kitamura, A., Kimoto, K., 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 236: 355366.Google Scholar
Kitamura, A., Kondo, Y., Sakai, H., Horii, M., 1994. Cyclic changes in lithofacies and molluscan content in the early Pleistocene Omma Formation, central Japan related to the 41,000-year orbital obliquity. Palaeogeography, Palaeoclimatology, Palaeoecology 112: 345361.Google Scholar
Kojima, S., Adachi, K., Kodama, Y., 2007. Formation of deep-sea fauna and changes of marine environment in the Japan Sea. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 82: 6771.Google Scholar
Kumamoto, Y., Yoneda, M., Shibata, Y., Kume, H., Tanaka, A., Uehiro, T., Morita, M., Shitashima, K., 1998. Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement. Geophysical Research Letters 25: 651654.Google Scholar
Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler, R., Pawson, D., 2001. Environmental influences on regional deep-sea species diversity. Annual Review of Ecology, Evolution, and Systematics 32: 5193.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003. http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Lombari, G., Boden, G., 1985. Modern Radiolarian Global Distributions (Special Publication No. 16A Cushman Foundation for Foraminiferal Research, Washington, DC.Google Scholar
Malyutina, M.V., Brandt, A., 2013. Introduction to SoJaBio (Sea of Japan Biodiversity Studies). Deep Sea Research, Part II: Topical Studies in Oceanography 86–87: 19. doi: 10.1016/j.dsr2.2012.08.011 Google Scholar
Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33: 409445.Google Scholar
Meyers, S.R., 2012. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology. Paleoceanography 27: PA3228. http://dx.doi.org/10.1029/2012PA00230.Google Scholar
Meyers, S.R., 2014. Astrochron: An R Package for Astrochronology (accessed September 12, 2016). https://cran.r-project.org/package=astrochron.Google Scholar
Moffitt, S.E., Hill, T.M., Roopnarine, P.D., Kennett, J.P., 2015. Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences of the United States of America 112: 46844689.Google Scholar
Moodley, L., van der Zwaan, G., Herman, P., Kempers, L., van Breugel, P., 1997. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Marine Ecology Progress Series 158: 151163.Google Scholar
Motoyama, I., Yamada, Y., Hoshiba, M., Itaki, T., 2016. Radioloarian assemblages in surface sediments of the Japan Sea. Paleontological Research 20: 176206.Google Scholar
Ortakand, M.S., Hasegawa, S., Matsumoto, R., 2015. Biostratigraphic and palaeoecologic evaluation of the Japan Sea’s Joetsu basin based on the study of foraminifera. Paleontological Research 19: 79106.Google Scholar
Ozawa, H., 1996. Ostracode fossils from the late Pliocene to early Pleistocene Omma Formation in the Hokuriku district, central Japan. Science Reports of the Kanazawa University 41: 77115.Google Scholar
Ozawa, H., 2003. Japan Sea ostracod assemblages in surface sediments: their distribution and relationships to water mass properties. Paleontological Research 7: 257274.CrossRefGoogle Scholar
Ozawa, H., 2004. Okhotsk Sea ostracods in surface sediments: depth distribution of cryophilic species relative to oceanic environment. Marine Micropaleontology 53: 245260.Google Scholar
Ozawa, H., Domitsu, H., 2010. Early Pleistocene ostracods from the Hamada Formation in the Shimokita Peninsula, northeastern Japan: the palaeobiogeographic significance of their occurrence for the shallow-water fauna. Paleontological Research 14: 118.Google Scholar
Ozawa, H., Kamiya, T., 2001. Palaeoceanographic records related to glacio-eustatic flucuations in the Pleistocene Japan Sea coast based on ostracods from the Omma Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 170: 2748.Google Scholar
Ozawa, H., Kamiya, T., 2005. The effects of glacio-eustatic sea-level change on Pleistocene cold-water ostracod assemblages from the Japan Sea. Marine Micropaleontology 54: 167189.CrossRefGoogle Scholar
Piper, D.Z., Isaacs, C.M., 1995. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions. Geological Society of America Bulletin 107: 5467.Google Scholar
Piper, D.Z., Isaacs, C.M., 1996. Instability of bottom-water redox conditions during accumulation of Quaternary sediment in the Japan Sea. Paleoceanography 11: 171190.Google Scholar
R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian basin (USA). Chemical Geology 206: 373391.Google Scholar
Senjyu, T., 1999. The Japan Sea Intermediate Water; its characteristics and circulation. Journal of Oceanography 55: 111122.Google Scholar
Stepanova, A., Lyle, M., 2014. Deep-sea Ostracoda from the Eastern Equatorial Pacific (ODP Site 1238) over the last 460 ka. Marine Micropaleontology 111: 100117.Google Scholar
Sun, Y., Clemens, S.C., An, Z., Yu, Z., 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25: 3348.Google Scholar
Tada, R., 1994. Paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 487508.Google Scholar
Tada, R., Irino, T., Ikehara, K., Karasuda, A., Sugisaki, S., Xuan, C., Sagawa, T., Itaki, T., Kubota, Y., Lu, S., Seki, A., Murray, R.W., Alvarez-Zarikian, C., and Exp. 346 Scientists. High-resolution and -precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346 (unpublished, under review).Google Scholar
Tada, R., Irino, T., Koizumi, I., 1999. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea. Paleoceanography 14: 236247.CrossRefGoogle Scholar
Tada, R., Murray, R.W., Alvarez Zarikian, C.A., the Expedition 346 Scientists. 2015. Proceedings of the Integrated Ocean Drilling Program. Vol. 346, Expedition Reports. Integrated Ocean Drilling Program, College Station, TX.Google Scholar
Takata, H., 2000. Paleoenvironmental changes during the deposition of the Omma Formation (late Pliocene to early Pleistocene) in Oyabe area, Toyama Prefecture based on the analysis of benthic and planktonic foraminiferal assemblages. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 67: 118.Google Scholar
Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70: 10551096.Google Scholar
Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232: 1232.Google Scholar
Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Special Publications 58: 124.Google Scholar
Usami, K., Ohi, T., Hasegawa, S., Ikehara, K., 2013. Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160–15 ka: associations with insolation changes. Marine Micropaleontology 101: 1027.Google Scholar
Watanabe, S., Tada, R., Ikehara, K., Fujine, K., Kido, Y., 2007. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 5064.Google Scholar
Yamada, K., Irizuki, T., Tanaka, Y., 2002. Cyclic sea-level changes based on fossil ostracode faunas from the Upper Pliocene Sasaoka Formation, Akita Prefecture, northeast Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 185: 115132.Google Scholar
Yamada, K., Kuroki, K., Yamaguchi, T. Pliocene and Pleistocene deep-sea ostracodes from Integrated Ocean Drilling Program Site U1426 in the Sea of Japan (Expedition 346). In: Tada, R., Murray, R.W., Alvarez Zarikian, C.A., and the Expedition 346 Scientists (Eds.), Asian Monsoon. Proceedings of the Integrated Ocean Drilling Program. Vol. 346. Integrated Ocean Drilling Program, College Station, TX. (in press).Google Scholar
Yamada, K., Tanaka, Y., Irizuki, T., 2005. Paleoceanographic shifts and global events recorded in late Pliocene shallow marine deposits (2.80–2.55 Ma) of the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 255271.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T., Hokanishi, N., Kawahata, H., Tsujimoto, A., Ishitake, M., 2012. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38: 162179.Google Scholar
Zhao, Q., Whatley, R., 1997. Distribution of the ostracod genera Krithe and Parakrithe in bottom sediments of the East China and Yellow Seas. Marine Micropaleontology 32: 195207.Google Scholar
Zhou, B., Ikeya, N., 2002. The limit of low oxygen level that marine ostracods can cope with: a case study of the Suruga Bay, central Japan. National Science Museum Monographs 22: 8995.Google Scholar
Supplementary material: File

Yamaguchi et al supplementary material

Yamaguchi et al supplementary material 1

Download Yamaguchi et al supplementary material(File)
File 81.7 KB
Supplementary material: File

Yamaguchi et al supplementary material

Yamaguchi et al supplementary material 2

Download Yamaguchi et al supplementary material(File)
File 54.2 KB