Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:16:41.900Z Has data issue: false hasContentIssue false

Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada

Published online by Cambridge University Press:  20 January 2017

Yarrow Axford*
Affiliation:
Institute of Arctic and Alpine Research and Department of Geological Sciences, University of Colorado, UCB 450, Boulder, CO, 80309, USA
Jason P. Briner
Affiliation:
Department of Geology, University at Buffalo, 876 Natural Sciences Complex, Buffalo, NY, 14260, USA
Gifford H. Miller
Affiliation:
Institute of Arctic and Alpine Research and Department of Geological Sciences, University of Colorado, UCB 450, Boulder, CO, 80309, USA
Donna R. Francis
Affiliation:
Department of Geosciences, University of Massachusetts, 233 Morrill Science Center, Amherst, MA, 01003, USA
*
Corresponding author. Fax: +1 303 492 6388. Email Address:[email protected]

Abstract

A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACIA Arctic Climate Impact Assessment: ACIA Scientific Report. (2005). University Press, New York, Cambridge. 1042 Google Scholar
Alley, R.B., and Ágústdóttir, A.M. The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, (2005). 11231149.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, (1997). 483486.Google Scholar
Andrews, J.T., and Ives, J.D. “Cockburn” nomenclature and the Late Quaternary history of the eastern Canadian arctic. Arctic and Alpine Research 10, (1978). 617633.CrossRefGoogle Scholar
Antonsson, K., Brooks, S.J., Seppa, H., Telford, R.J., and Birks, H.J.B. Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake Gilltjarnen, northern central Sweden. Journal of Quaternary Science 21, (2006). 831841.CrossRefGoogle Scholar
Axford, Y., Miller, G.H., Geirsdóttir, Á., and Langdon, P.G. Holocene temperature history of northern Iceland inferred from subfossil midges. Quaternary Science Reviews 26, (2007). 33443358.Google Scholar
Axford, Y., Geirsdóttir, Á., Miller, G.H., and Langdon, P.G. Climate of the Little Ice Age and the last 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies. Journal of Paleolimnology (2008). http://dx.doi.org/10.1007/s10933-008-9251-1 Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., and Gagnon, J.-M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, (1999). 344348.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.Google Scholar
Briner, J.P., Miller, G.H., Davis, P.T., and Finkel, R. Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada. Canadian Journal of Earth Sciences 42, (2005). 6784.Google Scholar
Briner, J.P., Michelutti, N., Francis, D.R., Miller, G.H., Axford, Y., Wooller, M.J., and Wolfe, A.P. A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quaternary Research 65, (2006). 431442.Google Scholar
Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, (2007). 887890.Google Scholar
Briner, J.P., Overeem, I., Miller, G.H., and Finkel, R. The deglaciation of Clyde Inlet, northeastern Baffin Island, Arctic Canada. Journal of Quaternary Science 22, (2007). 223232.CrossRefGoogle Scholar
Brodersen, K.P., and Anderson, N.J. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47, (2002). 11371157.Google Scholar
Brooks, S.J. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasion region. Quaternary Science Reviews 25, (2006). 18941910.CrossRefGoogle Scholar
Brooks, S.J., and Birks, H.J.B. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krakenes Lake, western Norway. Journal of Paleolimnology 23, (2000). 7789.CrossRefGoogle Scholar
Brooks, S.J., and Birks, H.J.B. Chironomid-inferred late-glacial air temperatures at Whitrig Bog, south-east Scotland. Journal of Quaternary Science 15, (2000). 759764.Google Scholar
Brooks, S.J., and Birks, H.J.B. The dynamics of Chironomidae (Insecta, Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. Journal of Paleolimnology 31, (2004). 483498.Google Scholar
Caseldine, C., Langdon, P., and Holmes, N. Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland. Quaternary Science Reviews 25, (2006). 23142331.Google Scholar
Chapin, F.S., Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp, T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman, W.L., Epstein, H.E., Euskirchen, E.S., Hinzman, L.D., Jia, G., Ping, C.L., Tape, K.D., Thompson, C.D.C., Walker, D.A., and Welker, J.M. Role of land-surface changes in Arctic summer warming. Science 310, (2005). 657660.Google Scholar
Conley, D.J. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry 6, (1988). 161179.CrossRefGoogle Scholar
Cuffey, K.M., and Clow, G. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. Journal of Geophysical Research 102, (1997). 2638326396.Google Scholar
Curry, R., and Mauritzen, C. Dilution of the northern North Atlantic Ocean in recent decades. Science 308, (2005). 17721774.Google Scholar
Cwynar, L.C., and Spear, R.W. Late-glacial climate change in the White Mountains, New Hampshire. Quaternary Science Reviews 20, (2001). 12651274.Google Scholar
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G., Johnsen, S., Hansen, A., and Balling, N. Past temperatures directly from the Greenland Ice Sheet. Science 282, (1998). 268271.Google Scholar
Dyke, A.S., and Hooper, J. Deglaciation of northwestern Baffin Island, Nunavut, Canada. Geological Survey of Canada Map 1999A (2001). scale 1:500,000 Google Scholar
Dyke, A.S., Dale, J.E., and McNeely, R.N. Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18,000 years. Geographie Physique et Quaternaire 50, (1996). 125184.CrossRefGoogle Scholar
Dyke, A.S., Hooper, J., and Savelle, J.M. A history of sea ice in the Canadian Arctic Archipelago based on Postglacial remains of the bowhead whale. Arctic 49, (1996). 235255.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, (2005). 7186.CrossRefGoogle Scholar
Environment Canada National Climate Archive. (2007). http://www.climate.weatheroffice.ec.gc.ca Google Scholar
Fisher, D.A., and Koerner, R.M. Holocene ice-core climate history — a multi-variable approach. Battarbee, R. Global Change in the Holocene. (2003). Hodder Arnold, London. 281293.Google Scholar
Fleitmann, D., Mudelsee, M., Burns, S.J., Bradley, R.S., Kramers, J., and Matter, A. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, (2008). PA1102 http://dx.doi.org/10.1029/2007PA001519 CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., and Matter, A. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, (2007). 170188.Google Scholar
Francis, D.R., Wolfe, A.P., Walker, I.R., and Miller, G.H. Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 236, (2006). 107124.Google Scholar
Fréchette, B., Wolfe, A.P., Miller, G.H., Richard, P.J.H., and de Vernal, A. Vegetation and climate of the last interglacial on Baffin Island, Arctic Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 236, (2006). 91106.Google Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and compatibility of results. Journal of Paleolimnology 25, (2001). 101110.Google Scholar
Heiri, O., Tinner, W., and Lotter, A.F. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences 101, (2004). 1528515288.Google Scholar
Holland, M.M., and Bitz, C.M. Polar amplification of climate change in coupled models. Climate Dynamics 21, (2003). 221232.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC), (2007). Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc.ch.Google Scholar
Juggins, S. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2003). University of Newcastle, Newcastle upon Tyne, UK. 69 Google Scholar
Kaplan, M.R., and Wolfe, A.P. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quaternary Research 65, (2006). 223231.Google Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdottir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.N., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Ruhland, K., Smol, J.P., Steig, E.J., and Wolfe, B.B. Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, (2004). 529560.Google Scholar
Knudsen, K.L., Stabell, B., Seidenkrantz, M.-S., Eiriksson, J., Blake, W. Jr. Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes. Boreas 37, (2008). 346376.CrossRefGoogle Scholar
Knutti, R., Stocker, T.F., Joos, F., and Plattner, G.-K. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, (2002). 719723.Google Scholar
Larocque, I., and Hall, R.I. Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29, (2003). 475493.Google Scholar
Levac, E., deVernal, A., and Blake, W.J. Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence. Journal of Quaternary Science 16, (2001). 353363.Google Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., and Marchetto, A. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18, (1997). 395420.CrossRefGoogle Scholar
Lotter, A.F., Walker, I.R., Brooks, S.J., and Hofmann, W. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quaternary Science Reviews 18, (1999). 717735.Google Scholar
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., and Prentice, M. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year long glaciochemical series. Journal of Geophysical Research 102, (1997). 2634526366.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.Google Scholar
McDermott, F., Mattey, D.P., and Hawkesworth, C. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294, (2001). 13281331. (erratum posted 16 September 2005) CrossRefGoogle ScholarPubMed
Michelutti, N., Wolfe, A.P., Briner, J.P., and Miller, G.H., in press. Climate shapes the chemical and biological development of arctic lakes. Journal of Geophysical Research 112, G03002, http://dx.doi.org/10.1029/2006JG000396 Google Scholar
Miller, G.H., Wolfe, A.P., Briner, J.P., Sauer, P.E., and Nesje, A. Holocene glaciation and climate evolution of Baffin Island, arctic Canada. Quaternary Science Reviews 25, (2005). 13831400.Google Scholar
Mortlock, R.A., and Froelich, P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research Part A 36, (1989). 14151426.Google Scholar
NGRIP Project Members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.Google Scholar
NRC Committee on Abrupt Climate Change Abrupt Climate Change: Inevitable Surprises. (2002). National Academy of Sciences, 244 Google Scholar
Olander, H., Birks, H.J.B., Korhola, A., and Blom, T. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9, (1999). 279294.Google Scholar
Porinchu, D.F., Potito, A.P., MacDonald, G.M., and Bloom, A.M. Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California lakes. Arctic, Antarctic, and Alpine Research 39, (2007). 286296.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, (2006). D06102 http://dx.doi.org/10.1029/2005JD006079 Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Rosen, P., Segerstrom, U., Eriksson, L., and Renberg, I. Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arctic, Anatarctic and Alpine Research 35, (2003). 279290.Google Scholar
Schmidt, G.A., Shindell, D.T., Miller, R.L., Mann, M.E., and Rind, D. General circulation modeling of Holocene climate variability. Quaternary Science Reviews 23, (2004). 21672181.Google Scholar
Seppä, H., Cwynar, L.C., and MacDonald, G.M. Post-glacial vegetation reconstruction and a possible 8200 cal. yr BP event from the low arctic of continental Nunavut, Canada. Journal of Quaternary Science 18, (2003). 621629.Google Scholar
Serreze, M.C., and Francis, J.A. The arctic amplification debate. Climatic Change 76, (2006). 241264.CrossRefGoogle Scholar
Serreze, M.C., Walsh, J.E., Chapin, F.S. III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T., and Barry, R.G. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 45, (2000). 159207.Google Scholar
Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., and Allen, M.R. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, (2005). 403406.Google Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W., (2005). CALIB 5.0. WWW program and documentation. Available at http://calib.qub.ac.uk/calib/.Google Scholar
Thomas, E.K., Axford, Y., and Briner, J.P. Rapid 20th-century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. Journal of Paleolimnology 40, (2008). http://dx.doi.org/10.1007/s10933-007-9178-y Google Scholar
Velle, G., Brooks, S.J., Birks, H.J.B., and Willassen, E. Chironomids as a tool for inferring Holocene climate, an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24, (2005). 14291462.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A., Olsen, J., and Heinemeier, J. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research 111, (2006). D13102 http://dx.doi.org/10.1029/2005JD006921 Google Scholar
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S.J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284, (1999). 16541657.Google Scholar
Walker, I. Midges: Chironomidae and related Diptera. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators. (2001). Kluwer, Dordrecht, The Netherlands. 4366.Google Scholar
Walker, I.R., Smol, J.P., Engstrom, D.R., and Birks, H.J.B. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48, (1991). 975987.Google Scholar
Walker, I.R., Mott, R.J., and Smol, J.P. Allerød–Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253, (1991). 10101012.Google Scholar
Walker, I.R., Levesque, J., Cwynar, L.C., and Lotter, A.F. An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, (1997). 165178.CrossRefGoogle Scholar
Williams, J.W., and Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, (2007). 475482. http://dx.doi.org/10.1890/070037 Google Scholar
Wolfe, A.P., Miller, G.H., Olsen, C.A., Forman, S.L., Doran, P.T., and Holmgren, S.U. Geochronology of high latitude lake sediments. Pienitz, R. et al. Long-term Environmental Change in Arctic and Antarctic Lakes. (2004). Springer, Netherlands. 1952.Google Scholar
Zickfeld, K., Levermann, A., Morgan, M.G., Kuhlbrodt, T., Rahmstorf, S., and Keith, D.W. Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Climatic Change 82, (2007). 235265.Google Scholar