Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T18:31:38.748Z Has data issue: false hasContentIssue false

Paleoecological and climatic implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube Coenen, Germany

Published online by Cambridge University Press:  20 January 2017

Christoph Wißing*
Affiliation:
University of Tübingen, Dept. of Geosciences, Biogeology, Hölderlinstrasse 12, 72074 Tübingen, Germany
Simon Matzerath
Affiliation:
LVR-LandesMuseum Bonn, Bachstr. 5-9, 53115 Bonn, Germany University of Tübingen, Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, Germany
Elaine Turner
Affiliation:
MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, 56567 Neuwied, Germany
Hervé Bocherens
Affiliation:
University of Tübingen, Dept. of Geosciences, Biogeology, Hölderlinstrasse 12, 72074 Tübingen, Germany Senckenberg Center for Human Evolution and Palaeoenvironment (HEP), Hölderlinstrasse 12, 72074 Tübingen, Germany
*
*Corresponding author.E-mail addresses:[email protected] (C.Wiβing), [email protected] (S. Matzerath), [email protected] (E. Turner), [email protected] (H. Bocherens).

Abstract

Climatic and ecological conditions during Marine Oxygen Isotope Stage (MIS) 3 are complex and the impact of cold spells on the ecosystems in Central Europe still needs to be investigated thoroughly. Ziegeleigrube Coenen (ZC) is a late Pleistocene MIS 3 locality in the Lower Rhine Embayment of Germany, radiocarbon-dated to > 34 14C ka BP. The site yielded a broad spectrum of mammal species. We investigated the carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) isotope signatures of bone collagen, since these are valuable tools in characterizing ecological niches, environmental conditions and aspects of climate and mobility. By comparison with pre- and post-Last Glacial Maximum (LGM) sites in Central Europe we show that ZC belongs in a cold event of MIS 3 and was climatically more similar to post-LGM sites than to pre-LGM sites. However, the trophic structure resembled that of typical pre-LGM sites in Belgium. This cold event in MIS 3 changed the bottom of the foodweb, but do not seem to have had a direct impact on the occurrence of the mammalian species and their ecological distribution. Apparently the (mega-) faunal community could adapt also to harsher environmental conditions during MIS 3.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S.H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431451.Google Scholar
Ambrose, S.H. (1991). Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293317.Google Scholar
Amundson, R. Austin, A.T. Schuur, E.A.G. Yoo, K. Matzek, V. Kendall, C. Uebersax, A. Brenner, D. Baisden, W.T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (31-131.10.)CrossRefGoogle Scholar
Bocherens, H. (2003). Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Reumer, J.W.F., De Vos, J., and Mol, D. Advances in Mammoth Research (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16–20 1999). Deinsea 9, 5776.Google Scholar
Bocherens, H. (2015). Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117, 4271.Google Scholar
Bocherens, H. Drucker, D. (2003). Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 4653.Google Scholar
Bocherens, H. Fizet, M. Mariotti, A. Lange-Badre, B. Vandermeersch, B. Borel, J.P. Bellon, G. (1991). Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neanderthal man. J. Hum. Evol. 20, 481492.CrossRefGoogle Scholar
Bocherens, H. Billiou, D. Patou-Mathis, M. Bonjean, D. Otte, M. Mariotti, A. (1997). Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quat. Res. 48, 370380.Google Scholar
Bocherens, H. Drucker, D. Billiou, D. Moussa, I. (2005). Une nouvelle approche pour évaluer l'état de conservation de l'os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l'azote). L'Anthropologie 109, 557567.CrossRefGoogle Scholar
Bocherens, H. Drucker, D.G. Bonjean, D. Bridault, A. Conard, N.J. Cupillard, C. Germonpré, M. Höneisen, M. Münzel, S.C. Napierala, H. Patou-Mathis, M. Stephan, E. Uerpmann, H.-P. Ziegler, R. (2011). Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quat. Int. 245, 249261.Google Scholar
Bocherens, H. Drucker, D.G. Taubald, H. (2011). Preservation of bone collagen sulphur isotopic compositions in an early Holocene river-bank archaeological site. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 3238.CrossRefGoogle Scholar
Bocherens, H. Germonpré, M. Toussaint, M. Semal, P. (2013). Stable isotopes. Rougier, H., and Semal, P. Spy cave. State of 125 years of Pluridisciplinary Research on the Betche aux Rotches from Spy (Jemeppe-sur-Sambre, Province of Namur, Belgium) 1, Royal Belgian Institute of Natural Sciences & NESPOS Society, Brussels. 331356.Google Scholar
Bocherens, H. Drucker, D.G. Madelaine, S. (2014). Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: implications for early modern human palaeodiet and palaeoenvironment. J. Hum. Evol. 69, 3143.Google Scholar
Bocherens, H. Drucker, D. Germonpé, M. Láznicková-Galetová, M. Naito, Y. Wissing, C. Brůžek, J. Oliva, M. (2015). Reconstruction of the Gravettian food-web at Předmostí I using isotopic tracking of bone collagen. Quat. Int. 359–360, 211228.Google Scholar
Bohncke, S. Bos, J. Engels, S. Heiri, O. Kasse, C. (2008). Rapid climatic events as recorded in Middle Weichselian thermokarst lake sediments. Quat. Sci. Rev. 27, 162174.Google Scholar
Bonjean, D. Abrams, G. Di Modica, K. Otte, M. (2009). La microstratigraphie, une clé de lecture des remaniements sédimentaires successifs. Le cas de l'industrie moustérienne 1A de Scladina. Notae Praehist. 29, 139147.Google Scholar
Brenner, D. Amundson, R. Baisden, W.T. Kendall, C. Harden, J. (2001). Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim. Cosmochim. Acta 65, 41714186.Google Scholar
Cacho, I. Grimalt, J. Pelejero, C. Canals, M. Sierro, F. Flores, J. Shackleton, N. (1999). Dansgaard–Oeschger and Heinrich event imprints in Alboran Sea paleotemparatures. Paleoceanography 14, 698705.CrossRefGoogle Scholar
Cerling, T.E. Ehleringer, J.R. Harris, J.M. (1998). Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philos. Trans. R. Soc. B Biol. Sci. 353, 159171.Google Scholar
Conard, N.J. Bolus, M. (2008). Radiocarbon dating the late Middle Paleolithic and the Aurignacian of the Swabian Jura. J. Hum. Evol. 55, 886897.CrossRefGoogle ScholarPubMed
Dansgaard, W. Johnsen, S.J. Clausen, H.B. Dahl-Jensen, D. Gundestrup, N.S. Hammer, C.U. Hvidberg, C.S. Steffensen, J.P. Sveinbjornsdottir, A.E. Jouzel, J. Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Dawson, T.E. Mambelli, S. Plamboeck, A.H. Templer, P.H. Tu, K.P. (2002). Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507559.Google Scholar
DeNiro, M.J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806809.Google Scholar
DeNiro, M.J. Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495506.Google Scholar
DeNiro, M.J. Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341351.Google Scholar
Drucker, D.G. Bocherens, H. Billiou, D. (2003). Evidence for shifting environmental conditions in Southwestern France from 33 000 to 15 000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores. Earth Planet. Sci. Lett. 216, 163173.CrossRefGoogle Scholar
Drucker, D.G. Bridault, A. Hobson, K.A. Szuma, E. Bocherens, H. (2008). Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 6982.Google Scholar
Drucker, D.G. Kind, C.J. Stephan, E. (2011). Chronological and ecological information on Late-glacial and early Holocene reindeer from northwest Europe using radiocarbon (14C) and stable isotope (13C, 15N) analysis of bone collagen: case study in southwestern Germany. Quat. Int. 245, 218224.Google Scholar
Drucker, D.G. Bridault, A. Cupillard, C. (2012). Environmental context of the Magdalenian settlement in the Jura Mountains using stable isotope tracking (13C, 15N, 34S) of bone collagen from reindeer (Rangifer tarandus). Quat. Int. 272–273, 322332.CrossRefGoogle Scholar
Drucker, D. Bocherens, H. Péan, S. (2014). Isotopes stables (13C, 15N) du collagène des mammouths de Mezhyrich: implications paléoécologiques. l'Anthropologie 118, 504517.Google Scholar
Farquhar, G.D. Ehleringer, J.R. Hubick, H.T. (1989). Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503537.Google Scholar
Fizet, M. Mariotti, A. Bocherens, H. (1995). Effect of diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in a late Pleistocene anthropic palaeoecosystem: Marillac, Charente, France. J. Archaeol. Sci. 22, 6779.Google Scholar
Flas, D. (2011). The Middle to Upper Paleolithic transition in Northern Europe: the Lincombian–Ranisian–Jerzmanowician and the issue of acculturation of the last Neanderthals. World Archaeol. 43, 605627.Google Scholar
Fox-Dobbs, K. Leonard, J.A. Koch, P.L. (2008). Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261, 3046.CrossRefGoogle Scholar
Germonpré, M. Udrescu, M. Fiers, E. (2014). Possible evidence of mammoth hunting at the Neanderthal site of Spy (Belgium). Quaternary International 337, 2842.CrossRefGoogle Scholar
Heaton, T.H.E. Vogel, J.C. von la Chevallerie, G. Collett, G. (1986). Climatic influence on the isotopic composition of bone nitrogen. Nature 322, 822823.Google Scholar
Higham, T. (2011). European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85, 235249.Google Scholar
Higham, T. Basell, L. Jacobi, R. Wood, R. Ramsey, C.B. Conard, N.J. (2012). Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664676.Google Scholar
Higham, T. Douka, K. Wood, R. Ramsey, C.B. Brock, F. Basell, L. Camps, M. Arrizabalaga, A. Baena, J. Barroso-Ruíz, C. Bergman, C. Boitard, C. Boscato, P. Caparrós, M. Conard, N.J. Draily, C. Froment, A. Galván, B. Gambassini, P. Garcia-Moreno, A. Grimaldi, S. Haesaerts, P. Holt, B. Iriarte-Chiapusso, M.-J. Jelinek, A. Jordá Pardo, J.F. Maíllo-Fernández, J.-M. Marom, A. Maroto, J. Menéndez, M. Metz, L. Morin, E. Moroni, A. Negrino, F. Panagopoulou, E. Peresani, M. Pirson, S. de la Rasilla, M. Riel-Salvatore, J. Ronchitelli, A. Santamaria, D. Semal, P. Slimak, L. Soler, J. Soler, N. Villaluenga, A. Pinhasi, R. Jacobi, R. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306309.Google Scholar
Hobbie, E.A. Hogberg, P. (2012). Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol. 196, 367382.Google Scholar
Iacumin, P. Bocherens, H. Mariotti, A. Longinelli, A. (1996). An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 1530.Google Scholar
Iacumin, P. Bocherens, H. Huertas, D. Mariotti, A. Longinelli, A. (1997). A stable isotope study of fossil mammal remains from the Paglicci cave, Southern Italy. N and C as palaeoenvironmental indicators. Earth Planet. Sci. Lett. 148, 349357.Google Scholar
Longin, R. (1971). New method of collagen extraction for radiocarbon dating. Nature 230, 241242.Google Scholar
Matzerath, S. Turner, E. Fischer, P. Van der Plicht, J. (2012). Radiokohlenstoffdatierte Megafauna aus dem Interpleniglazial der westlichen Niederrheinischen Bucht, Deutschland — Die Funde aus dem Löss der Ziegeleigrube Coenen (Kreis Düren). Quartär 59, 4766.Google Scholar
Matzerath, S. Turner, E. Fischer, P. Boscheinen, J. (2014). Beiträge zur spätpleistozänen Megafauna im Rheinland — Ergebnisse der geologischen und paläontologischen Untersuchungen in der Ziegeleigrube Coenen (Kreis Düren). Jülicher Geschichtsblätter 76/77/78, 2008/2009/2010 (Goch 2014) 17174.Google Scholar
Minagawa, M. Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim. Cosmochim. Acta 48, 11351140.Google Scholar
Nehlich, O. (2015). The application of sulphur isotope analyses in archaeological research: a review. Earth Sci. Rev. 142, 117.Google Scholar
Nehlich, O. Richards, M.P. (2009). Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 5975.Google Scholar
Peterson, B. Fry, B. (1987). Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293320.Google Scholar
Pirson, S. Flas, D. Abrams, G. Bonjean, D. Court-Picon, M. Di Modica, K. Draily, C. Damblon, F. Haesaerts, P. Miller, R. Rougier, H. Toussaint, M. Semal, P. (2012). Chronostratigraphic context of the Middle to Upper Palaeolithic transition: recent data from Belgium. Quat. Int. 259, 7894.Google Scholar
Richards, M.P. Hedges, R.E.M. (2003). Variations in bone collagen δ13C and δ15N values of fauna from Northwest Europe over the last 40 000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 261267.Google Scholar
Richards, M.P. Fuller, B.T. Sponheimer, M. Robinson, T. Ayliffe, L. (2003). Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. Int. J. Osteoarchaeol. 13, 3745.Google Scholar
Rivals, F. Schulz, E. Kaiser, T.M. (2009). Late and middle Pleistocene ungulates dietary diversity in Western Europe indicate variations of Neanderthal paleoenvironments through time and space. Quat. Sci. Rev. 28, 33883400.CrossRefGoogle Scholar
Rodières, E. Bocherens, H. Angibault, J.M. Mariotti, A. (1996). Isotopic particularities of nitrogen in roe-deer (Capreolus capreolus L.): implications for palaeoenvironmental reconstructions. Comptes Rendus de l'Academie Des Sciences Serie Ii Fascicule IIa. Sci. Terre Planets 323, 179185.Google Scholar
Roucoux, K.H. de Abreu, L. Shackleton, N.J. Tzedakis, P.C. (2005). The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quat. Sci. Rev. 24, 16371653.Google Scholar
Sánchez Goñi, M.F. Landais, A. Fletcher, W.J. Naughton, F. Desprat, S. Duprat, J. (2008). Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 11361151.CrossRefGoogle Scholar
Stevens, R.E. Hedges, R.E.M. (2004). Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP–present: palaeoclimatic interpretations. Quat. Sci. Rev. 23, 977991.Google Scholar
Stevens, R.E. Jacobi, R. Street, M. Germonpré, M. Conard, N.J. Münzel, S.C. Hedges, R.E.M. (2008). Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: palaeoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 262, 3245.Google Scholar
Stevens, R.E. Germonpré, M. Petrie, C.A. O'Connell, T.C. (2009). Palaeoenvironmental and chronological investigations of the Magdalenian sites of Goyet Cave and Trou de Chaleux (Belgium), via stable isotope and radiocarbon analyses of horse skeletal remains. J. Archaeol. Sci. 36, 653662.Google Scholar
Stevens, R.E. O'Connell, T.C. Hedges, R.E. Street, M. (2009). Radiocarbon and stable isotope investigations at the Central Rhineland sites of Gonnersdorf and Andernach–Martinsberg, Germany. J. Hum. Evol. 57, 131148.CrossRefGoogle ScholarPubMed
Stevens, R.E. Hermoso-Buxán, X.L. Marín-Arroyo, A.B. González-Morales, M.R. Straus, L.G. (2014). Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 4660.Google Scholar
Svensson, A. Andersen, K.K. Bigler, M. Clausen, H.B. Dahl-Jensen, D. Davies, S.M. Johnsen, S.J. Muscheler, R. Parrenin, F. Rasmussen, S.O. Röthlisberger, R. Seierstad, I. Steffensen, J.P. Vinther, B.M. (2008). A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 4757.CrossRefGoogle Scholar
Van Meerbeeck, C.J. Renssen, H. Roche, D.M. Wohlfarth, B. Bohncke, S.J.P. Bos, J.A.A. Engels, S. Helmens, K.F. Sánchez-Goñi, M.F. Svensson, A. Vandenberghe, J. (2011). The nature of MIS 3 stadial–interstadial transitions in Europe: new insights from model—data comparisons. Quat. Sci. Rev. 30, 36183637.Google Scholar
Wood, R.E. Bronk Ramsey, C. Higham, T.F.G. (2010). Refining the ultrafiltration bone pre-treatment background for radiocarbon dating at ORAU. Radiocarbon 52, 600611.CrossRefGoogle Scholar
Yeakel, J.D. Guimaraes, P.R. Jr. Bocherens, H. Koch, P.L. (2013). The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc. Biol. Sci. R. Soc. 280, 110.Google ScholarPubMed