Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T09:05:33.589Z Has data issue: false hasContentIssue false

Paleobiological Implications of the Isotopic Signatures (13C,15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

Published online by Cambridge University Press:  20 January 2017

Hervé Bocherens
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université Pierre et Marie Curie, CNRS–INRA, UMR 162, 4 place Jussieu, F-75252, Paris Cedex 05, France
Daniel Billiou
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université Pierre et Marie Curie, CNRS–INRA, UMR 162, 4 place Jussieu, F-75252, Paris Cedex 05, France
Marylène Patou-Mathis
Affiliation:
Institut de Paléontologie Humaine, 1 rue René Panhard, 75013, Paris, France
Dominique Bonjean
Affiliation:
Asbl Archéologie Andennaise, Grand'Place, 132, B-5300, Sclayn, Belgium
Marcel Otte
Affiliation:
Centre de Recherche sur les Civilisations Paléolithiques en Europe, Université de Liège, Préhistoire, 7, Place du 20 Août, A1, B-40000, Liège 1, Belgium
André Mariotti
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université Pierre et Marie Curie, CNRS-INRA, UMR 162, 4 place Jussieu, F-75252 Paris Cedex 05, France

Abstract

An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S. H., Prospects for stable isotopic analysis of Later Pleistocene hominid diets in West Asia and Europe. Neanderthals and Humans in West Asia. Plenum Press, New York. Google Scholar
Ambrose, S.H., DeNiro, M.J., (1986). The isotopic ecology of East African mammals. Oecologia. 69, 395406.Google Scholar
Bocherens, H., (1997). Isotopic biogeochemistry as a marker of Neandertal diet. Anthropologischer Anzeiger. 55, 101120.Google Scholar
Bocherens, H., Mariotti, A., (1997). Comments on: Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biochemistry: Implications for Pleistocene bears by Bocherenset al. Palaeogeography, Palaeoclimatology, Palaeoecology. 128, 362364.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., Lange-Badré, B., Vandermeersch, B., Borel, J.P., Bellon, G., (1991). Isotopic biogeochemistry (13 15 . Journal of Human Evolution. 20, 481492.CrossRefGoogle Scholar
Bocherens, H., Fizet, M., Mariotti, A., (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoeocology. 107, 213225.CrossRefGoogle Scholar
Bocherens, H., Fizet, M., Mariotti, A., Gangloff, R.A., Burns, J.A., (1994). Contribution of isotopic biogeochemistry (13 15 18 Mammuthus primigenius . Historical Biology. 7, 187202.Google Scholar
Bocherens, H., Emslie, S.D., Billiou, D., Mariotti, A., (1995). Stable isotopes (13 15 Arctodus simus . Comptes Rendus de l'Académie des Sciences, Paris. 320, 779784.Google Scholar
Bocherens, H., Fogel, M.L., Tuross, N., Zeder, M., (1995). Trophic structure and climatic information from isotopic signatures in a Pleistocene cave fauna of Southern England. Journal of Archaeological Science. 22, 327340.CrossRefGoogle Scholar
Bocherens, H., Pacaud, G., Lazarev, P., Mariotti, A., (1996). Stable isotope abundances (13 15 . Palaeogeography, Palaeoclimatology, Palaeoecology. 126, 3144.CrossRefGoogle Scholar
Bonjean, D., (1996). La grotte Scladina. Bonjean, D., Neandertal. ASBL Archéologie Andennaise, 286305.Google Scholar
DeNiro, M.J., (1985). Post-mortem preservation and alteration ofin vivo . Nature. 317, 806809.CrossRefGoogle Scholar
DeNiro, M.J., Epstein, S., (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta. 45, 341351.CrossRefGoogle Scholar
Fernandez, J., Markgraf, V., Panarello, H.O., Albero, M., Angiolini, F.E., Valencio, S., Arriaga, M., (1991). Late Pleistocene/Early Holocene environments and climates, fauna, and human occupation in the Argentine Altiplano. Geoarchaeology: An International Journal. 6, 251272.Google Scholar
Fizet, M., Mariotti, A., Bocherens, H., Lange-Badré, B., Vandermeersch, B., Borel, J.P., Bellon, G., (1995). Effect of diet, physiology and climate on carbon and nitrogen isotopes of collagen in a late Pleistocene anthropic paleoecosystem (France, Charente, Marillac). Journal of Archaeological Science. 22, 6779.Google Scholar
Frenzel, B., (1968). The Pleistocene vegetation of Northern Eurasia. Science. 161, 637649.Google Scholar
Gröcke, D. R., Distribution of C3 and C4 Plants in the late pleistocene of South Australia recorded by isotope biogeochemistry of collagen in megafauna. Australian Journal of Botany. .Google Scholar
Gröcke, D.R., Bocherens, H., (1996). Isotopic investigation of an Australian island environment. Comptes Rendus de l'Académie des Sciences Paris. 322, 713719.Google Scholar
Heaton, T.H., (1996). Interpretation of δ13 . Current Research in the Pleistocene. 12, 9597.Google Scholar
Iacumin, P., Bocherens, H., Mariotti, A., Longinelli, A., (1996). An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeography, Palaeoclimatology, Palaeoecology. 126, 1530.CrossRefGoogle Scholar
Koch, P.L., (1991). The isotopic ecology of Pleistocene proboscidians. Journal of Vertebrate Paleontology. 11, 40A.Google Scholar
Matheus, P.E., (1995). Diet and co-ecology of Pleistocene short-faced bears and brown bears in Eastern Beringia. Quaternary Research. 44, 447453.CrossRefGoogle Scholar
Minagawa, M., Wada, E., (1984). Stepwise enrichment of15 15 . Geochimica et Cosmochimica Acta. 48, 11351140.Google Scholar
Otte, M., (1974). Les pointes à retouches plates du paléolithique supérieur initial en Belgique. Etudes et Recherches Archeologiques de l'Universite de Liege. 2, 124.Google Scholar
Renault-Miskovsky, J., (1985). L'environnement au temps de la préhistoire. Masson, Paris. Google Scholar
Simonet, P., (1992). Les associations de grands mammifères du gisement de la grotte Scladina à Sclayn (Namur, Belgique). Recherches aux grottes de Sclayn. 1,, 127, 151.Google Scholar
van der Merwe, N.J., (1986). Carbon isotope ecology of herbivores and carnivores. Palaeocology of Africa and the Surrounding Islands. 17, 123131.Google Scholar
van Klinken, G.J., van der Plicht, H., Hedges, R.E.M., (1994). Bone13 12 . Geophysical Research Letters. 21, 445448.Google Scholar