Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T01:34:31.941Z Has data issue: false hasContentIssue false

A mixed-feeding Equus species from the middle pleistocene of South Africa

Published online by Cambridge University Press:  20 January 2017

Thomas M. Kaiser*
Affiliation:
Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany
Tamara A. Franz-Odendaal
Affiliation:
Department of Zoology, University of Cape Town, Rondebosch 7700, South Africa
*
*Corresponding author. Zoological Institute and Museum, University of Greifswald, Johann-Sebastian-Bach Str. 11-12, D-17489 Greifswald, Germany.

E-mail addresses:[email protected] (T.M. Kaiser), [email protected](T.A. Franz-Odendaal).

Abstract

The dietary regime of Equus capensis from the Middle Pleistocene of South Africa is investigated by mesowear analysis. Results indicate that the mesowear signature of this species resembles that of two extant mixed feeders, the Grant's Gazelle (Gazella granti) and the Thomson's Gazelle (Gazella thomsoni), suggesting a mixed feeding dietary strategy for E. capensis. The mesowear signature of a contemporaneous population of Equus mosbachensis from Europe (Arago, France) is also determined for comparative purposes and has a typical grazing signature. In general, all extant species of Equus are believed to be almost exclusively grazers. However, a considerable degree of dietary flexibility is recently reported. The dietary signal of E. capensis is considered to be the result of feeding on the unique fynbos vegetation, which was beginning to establish itself at this time in southwestern South Africa. Grasses are a minor component of this floral kingdom. Our findings thus provide further evidence for the unexpected flexibility in feeding strategies of Equus, the most widely distributed equid taxon in the Quaternary. They highlight the potential use of the attrition"abrasion wear equilibrium as a habitat indicator, by mirroring the availability of food items in mammalian herbivore ecosystems.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4J1, Canada.

References

Ansell, W.F.H., (1960). Mammals of Northern Rhodesia. Government Printer, Lusaka.Google Scholar
Berger, J., (1986). Wild Horses of the Great Basin: Social Competition and Population Size. Chicago Univ. Press, Chicago.365.Google Scholar
Bernor, R.L., Armour-Chelu, M., (1999). The family Equidae. Rössner, G.E., Heissig, K., The Miocene Land Mammals of Europe Friedrich Pfeil, München.193202.Google Scholar
Bernor, R.L., Armour-Chelu, M., Kaiser, T.M., Scott, R.S., (2003). An evaluation of the late MN 9 (Late Miocene, Vallesian Age), Hipparion assemblage from Rudabánya (Hungary): systematic background, functional anatomy and paleoecology. Coloquios de Paleontología Ext. 1, 3545.Google Scholar
Bernor, R.L., Kaiser, T.M., Nelson, S.V., (2004). The oldest Ethiopian Hipparion (Equinae, Perissodactyla) from Chorora: sytematics, paleodiet and paleoclimate. Courier Forschungsinstitut Senckenberg 246, 213226.Google Scholar
Brain, C.K., (1981). The hunters or the Hunted? An Introduction to African Cave Taphonomy. The University of Chicago, Chicago.361.Google Scholar
Brink, J.S., (1993). Postcranial evidence for the evolution of the black wildebeest. Connochaetes gnou: an exploratory study. Palaeontologia Africana 30, 6169.Google Scholar
Brink, J.S., Lee-Thorp, J.A., (1992). The feeding niche of an extinct springbok, Antidorcas bondi (Antilopini, Bovidae), and its palaeoenvironmental meaning. South African Journal of Science 88, 227229.Google Scholar
Broom, R., (1909). On evidence of a large horse recently extinct in South Africa. Annals of the South African Museum 7, 281282.Google Scholar
Broom, R., (1913). Note on Equus capensis . Bulletin of the American Museum of Natural History 32, 437439.Google Scholar
Broom, R., (1928). On some new mammals from the diamond gravels of the Kimberley district. Annals of the South African Museum 22, 39444.Google Scholar
Broom, R., Le Riche, H., (1937). The dentition of Equus capensis . South African Journal of Science 33, 769770.Google Scholar
Churcher, C.S., (1970). The fossil Equidae from the Krugersdorp Caves. Annals of the Transvaal Museum 26, 145168.Google Scholar
Cooke, H.B.S., (1983). Horses, elephants and pigs as clues in the African later Cainozoic. Vogel, J.C., Late Cainozoic Palaeoclimates of the Southern Hemisphere 473482.Google Scholar
Croitor, R., Kaiser, T.M., (2002). Functional morphology and diet preferences of fossil deer and paleolandscape reconstruction on early pleistocene of Ceyssaguet. Verhandlungen der Gesellschaft füer Öekologie 32, 465.Google Scholar
Darling, F.F., (1960). Wildlife in an African Territory. Oxford Univ. Press, London.Google Scholar
Eisenmann, V., (1979). Le genre Hipparion (Mammalia, Perissodactyla) et son inérêt biostratigraphique en Afrique. Compte rendu sommaire et Bulletin de la Societe Geologique de France 7e Serie 21, 277281.Google Scholar
Eisenmann, V., (1983). Family Equidae. Harris, J.M., Koobi Fora Research Project. Volume 2: The fossil ungulates: Probiscidea, Perissodactyla, and Suidae Cambridge Univ. Press, Oxford.Google Scholar
Eisenmann, V., (1992). Origins, dispersals, and migrations of Equus (Mammalia, Perissodactyla). Courier Forschungsinstitut Senckenberg 153, 161170.Google Scholar
Eisenmann, V., (2000). Equus capensis (Mammalia, Perissodactyla) from Elandsfontein. Palaeontologia Africana 36, 9196.Google Scholar
Forsten, A., Moigne, A., (1998). The horse from the Middle Pleistocene of Orgnac-3 (Ardèche, France). Quaternaire 9, 315323.Google Scholar
Fortelius, M., Solounias, N., (2000). Functional characterisation of ungulate molars using abrasion–attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301, 136.Google Scholar
Franz-Odendaal, T.A., (2002). Analysis of dental pathologies in the herbivores of Langebaanweg and their paleoenvironmental implications.. PhD dissertation. University of Cape Town, South Africa.Google Scholar
Franz-Odendaal, T.A., Kaiser, T.M., (2003). Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici 40, 395410.Google Scholar
Franz-Odendaal, T.A., Lee-Thorp, J.A., Chinsamy, A., (2002). New evidence for the lack of C4 grassland expansions during the Early Pliocene at Langebaanweg, South Africa. Paleobiology 28, 3 378388.Google Scholar
Franz-Odendaal, T.A., Kaiser, T.M., Bernor, R.L., (2003). Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science 99, 453459.Google Scholar
Gagnon, M., Chew, A.E., (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy 81, 490511.2.0.CO;2>CrossRefGoogle Scholar
Gruvaeus, G., Weiner, H., (1972). Two additions to hierarchical cluster analysis. British Journal of Mathematical & Statistical Psychology 25, 200206.CrossRefGoogle Scholar
Hartigan, J.A., (1975). Clustering algorithms. John Wiley & Sons, New York.Google Scholar
Hayek, L.A.C., Bernor, R.L., Solounias, N., Steigerwald, P., (1992). Preliminary studies of hipparionine horse diet as measured by tooth microwear. Forsten, A., Fortelius, M., Bjorn Kurten–A Memorial Volume. Annales Zoologici Fennici 187200.Google Scholar
Hofmann, R.R., (1989). Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443457.Google Scholar
Hofmann, R.R., Stewart, D.R.M., (1972). Grazer or browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226240.Google Scholar
Janis, C.M., (1986). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Russell, D.E., Santoro, J.P., Sigogneau-Russell, D., Teeth Revisits: Proceedings of the 7th International Symposium Dental Morphology. Mém. Mus. natn. Hist. Nat., (Sér. C) 53, 367387.Google Scholar
Janis, C.M., Ehrhard, D., (1988). Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society 92, 267284.CrossRefGoogle Scholar
Kaiser, T.M., (2003). The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (Upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 198, 381402.Google Scholar
Kaiser, T.M., Fortelius, M., (2003). Differential mesowear in occluding upper and lower molars–Opening mesowear analysis for lower molars and premolars in hypsodont equids. Journal of Morphology 258, 1 6783.CrossRefGoogle Scholar
Kaiser, T.M., Solounias, N., (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25, 2 321345.Google Scholar
Kaiser, T.M., Solounias, N., Fortelius, M., Bernor, R.L., Schrenk, F., (2000). Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany)–A blind test study. Carolinea 58, 103114.Google Scholar
Kaiser, T.M., Bernor, R.L., Franzen, J.L., Scott, R., Solounias, N., (2003). New interpretations of the systematics and palaeoecology of the Dorn-Dürkheim 1 Hipparions (Late Miocene, Turolian Age [MN11]), Rheinhessen Germany. Senckenbergiana Lethaea 83, 1/2 103133.Google Scholar
Klein, R.G., (1974). A provisional statement on terminal Pleistocene mammalian extinctions in the Cape biotic zone (Southern Cape Province, South Africa). Goodwin Series-South African Archaeological Society 2, 3945.Google Scholar
Klein, R.G., (1975). Palaeoanthropological implications of the nonarchaeological bone assemblage from Swartklip 1, south-western Cape Province, South Africa. Quaternary Research 5, 275288.Google Scholar
Klein, R.G., (1978). The fauna and overall interpretation of the ‘Cutting 10’ Acheuleas Site at Elandsfontein (Hopefield), Southwestern Cape Province, South Africa. Quaternary Research 10, 6983.CrossRefGoogle Scholar
Klein, R.G., (1984). The large mammals of southern Africa: Late Pliocene to recent. Klein, R.G., Southern African Prehistory and Paleoenvironments A.A. Balkema, Rotterdam.107148.Google Scholar
Lee-Thorp, J.A., Beaumont, P.B., (1995). Vegetation and seasonality sifts during the Late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quaternary Research 43, 426432.CrossRefGoogle Scholar
Lindsay, E.H., Opdyke, N.D., Johnson, N.M., (1980). Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events. Nature 287, 135138.Google Scholar
Luyt, J., Avery, G., Lee-Thorp, J.A., (2001). New light on mid-Pleistocene West Coast environments from Elandsfontein, Western Cape Province, South Africa. South African Journal of Science 96, 7 399404.Google Scholar
MacFadden, B.J., Cerling, T.E., (1996). Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Palaeontology 1616, 1 103115.Google Scholar
MacFadden, B.J., Solounias, N., Cerling, T.E., (1999). Ancient diets, ecology, and extinctions of 5-year-million-old horses from Florida. Science 283, 824827.Google Scholar
Meadow, R.H., Uerpmann, H.P., (1986). Equids in the ancient world. Beihefte zum Tübinger Atlas des Vorderen Orients. Reihe A, (Naturwissenschaften) 19/1, 421.Google Scholar
Moigne, A.M., (1983). Macrofauna of la Caune de l'Arago Tautavel France. Anthropos 10, 257260.Google Scholar
Repenning, C.A., (1987). Biochronology of the microtine rodents of the Unites States. Woodburne, M.O., Cenozoic Mammals of North America, Geochronology and Biostratigraphy University of California Press, Los Angeles.236268.Google Scholar
Roeder, J., (1999). Zur Ökologie des Bergzebras im südlichen Namibia.. M. Sc. thesis, Ernst-Moritz-Arndt-University, Greifswald.Google Scholar
Scott, L., (1995). Pollen evidence for vegetational and climatic change in southern Africa during the Neogene and Quaternary. Vrba, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H., Paleoclimate and Evolution with Emphasis on Human Origins Yale Univ. Press, Yale.6576.Google Scholar
Smuts, G.L., (1972). Seasonal movements, migration and age determination of Burchell's zebra (Equus burchelli antiquorum, H. Smith, 1841) in the Kruger National Park.. M. Sc. thesis, University of Pretoria, South Africa.Google Scholar
Smuts, G.L., (1975). Home range sizes for Burchell's zebra Equus burchelli antiquorum from the Kruger National Park. Koedoe 18, 139146.Google Scholar
Steininger, F.F., Berggren, W.A., Kent, D.V., Bernor, R.L., Sen, S., Agusti, J., (1996). Circum-mediterranean Neogene (Miocene and Pliocene) marine-continental chronologic correlations of European mammal units. Bernor, R.L., Fahlbusch, V., Mittmann, H.W., The Evolution of Western Eurasian Neogene Mammal Faunas Columbia Univ. Press, New York.746.Google Scholar
Uerpmann, H.P., (1976). Equus (Equus) caballus und Equus (Asinus) hydruntinus im Postpleistozän der Iberischen Halbinsel (Perissodactylia Mammalia). Säugetierkundliche Mitteilungen 3, 206218.Google Scholar
Uerpmann, H.P., (1991). Equus africanus in Arabia. Meadow, R.H., Uerpmann, H.P., Equids in the Ancient World II. Beihefte zum Tübinger Atlas des Vorderen Orients. Reihe A, Naturwissenschaften vol. 19/2, 1233.Google Scholar
Van Wieren, S.E., (1996). Digestive Strategies in Ruminants and Nonruminants. CIP-Data Koninklijke Bibliotheek, Den Haag.Google Scholar
Walker, E.P., (1975). Mammals of the World. John Hopkins Univ. Press, Baltimore, M.D.Google Scholar
Wang, Y., Cerling, T.E., MacFadden, B.J., (1994). Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 269279.Google Scholar
Ziccardi, F., (1970). The African Wild Ass: Part I and II. 287292.02-208.Google Scholar