Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T13:42:43.532Z Has data issue: false hasContentIssue false

Middle Holocene rapid environmental changes and human adaptation in Greece

Published online by Cambridge University Press:  20 January 2017

Laurent Lespez*
Affiliation:
LGP-UMR 8591 CNRS, University of Paris East-Créteil (UPEC), 1 place Aristide Briand, 92195 Meudon Cedex, France
Arthur Glais
Affiliation:
LETG CAEN-UMR 6554 CNRS, University of Caen-Normandie, Esplanade de la Paix, 14000 Caen, France
José-Antonio Lopez-Saez
Affiliation:
G.I. Arqueobiología, Instituto de Historia, CCHS, CSIC, 28037 Madrid, Spain
Yann Le Drezen
Affiliation:
LGP-UMR 8591 CNRS, University of Paris East-Créteil (UPEC), 1 place Aristide Briand, 92195 Meudon Cedex, France
Zoï Tsirtsoni
Affiliation:
ArScAn-UMR 7041 CNRS, University of Paris I, Paris 10, and French Ministry of Culture, 21 allée de l'université, 92023 Nanterre Cedex, France
Robert Davidson
Affiliation:
LETG CAEN-UMR 6554 CNRS, University of Caen-Normandie, Esplanade de la Paix, 14000 Caen, France
Laetitia Biree
Affiliation:
LETG CAEN-UMR 6554 CNRS, University of Caen-Normandie, Esplanade de la Paix, 14000 Caen, France
Dimitra Malamidou
Affiliation:
Ephorate of Prehistoric and Classical Antiquities, Er. Stavrou 17, 65110 Kavala, Greece
*
Corresponding author. Fax: + 33 01 45 17 11 76. E-mail address:[email protected], [email protected] (L. Lespez).

Abstract

Numerous researchers discuss of the collapse of civilizations in response to abrupt climate change in the Mediterranean region. The period between 6500 and 5000 cal yr BP is one of the least studied episodes of rapid climate change at the end of the Late Neolithic. This period is characterized by a dramatic decline in settlement and a cultural break in the Balkans. High-resolution paleoenvironmental proxy data obtained in the Lower Angitis Valley enables an examination of the societal responses to rapid climatic change in Greece. Development of a lasting fluvio-lacustrine environment followed by enhanced fluvial activity is evident from 6000 cal yr BP. Paleoecological data show a succession of dry events at 5800–5700, 5450 and 5000–4900 cal yr BP. These events correspond to incursion of cold air masses to the eastern Mediterranean, confirming the climatic instability of the middle Holocene climate transition. Two periods with farming and pastural activities (6300–5600 and 5100–4700 cal BP) are evident. The intervening period is marked by environmental changes, but the continuous occurrence of anthropogenic taxa suggests the persistence of human activities despite the absence of archaeological evidence. The environmental factors alone were not sufficient to trigger the observed societal changes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancel, J. (1930). La Macédoine, étude de colonisation contemporaine. Librairie Delagrave, Paris.Google Scholar
Andreou, S., Fotiadis, M., Kotsakis, K. (1996). Review of Aegean prehistory V: the Neolithic and Bronze Age of northern Greece. American Journal of Archaeology 100, 537597.Google Scholar
Anthony, D.W., Chi, J.Y. The lost world of old Europe.(2009). The Danube Valley, 5000–3500 BC ISAW, New York University-Princeton University Press, New York and Princeton.Google Scholar
Athanasiadis, N., Tonkov, S., Atanassova, J., Bozilova, E. (2000). Palynological study of Holocene sediments from Lake Doirani in northern Greece. Journal of Paleolimnology 24, 331342.Google Scholar
Atherden, M.A. (2000). Human impact on the vegetation of southern Greece and problems of palynological interpretation: a case study from Crete.Halstead, P., Frederik, C. Landscape and Land Use in Postglacial Greece, Sheffield Studies in Aegean Archaeology, Sheffield 6278.Google Scholar
Atherden, M., Hall, J., Wright, J.C. (1993). A pollen diagram from the northeast Peloponnese, Greece: implications for vegetation history and archaeology. The Holocene 3, 351356.Google Scholar
Bakker, R., van Smeerdijk, D.G. (1982a). A palaeocological study of a Late Holocene section from “Het Ilperweld” W. Netherlands. Review of Palaeobotany and Palynology 36, 95163.Google Scholar
Bakker, M., Van Smeerdijk, D.G. (1982b). A palaeoecological study of a late Holocene section from “Het Ilperveld”, Western Netherlands. Review of Palaeobotany and Palynology 36, 95163.Google Scholar
Bakker, R., van Smeerdijk, D.G. (1982c). A palaeocological study of a Late Holocene section from “Het Ilperweld” W. Netherlands. Review of Palaeobotany and Palynology 36, 95163.Google Scholar
Bar-Matthews, M., Ayalon, A. (2011). Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene 21, 163171.CrossRefGoogle Scholar
Bellier, R.-C. Bondoux, Cheynet, J.-C., Geyer, B., Grélois, J.-P., Kravari, V. (1986). Paysages de Macédoine. Travaux et mémoires du Centre de Recherche d'Histoire et de Civilisation de Byzance du Collège de France Monographies 3, De Boccard, Paris.Google Scholar
Benito, G., Macklin, M.G., Zielhofer, C., Jones, A.F., Machado, M.J. (2015). Holocene flooding and climate change in the Mediterranean. CATENA 130, 1333.CrossRefGoogle Scholar
Berger, J.-F., Guilaine, J. (2009). The 8200 cal BP abrupt environmental change and the Neolithic transition: a Mediterranean perspective. Quaternary International 200, 3149.Google Scholar
Berger, A., Loutre, M.-F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Berglund, B. (2003). Human impact and climate changes — synchronous events and a causal link?. Quaternary International 105, 712.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Bottema, S. (1974). Late Quaternary Vegetation History of Northwestern Greece. Groningen, (Thesis)Google Scholar
Bottema, S. (1979). Pollen analytical investigations in Thessaly (Greece). Palaeohistoria 21, 1940.Google Scholar
Bottema, S., Sarpaki, A. (2003). Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13, 733749.Google Scholar
Boyadžiev, Y. ("iev, 1995). )Chronology of prehistoric cultures in Bulgaria.Bailey, D.W., Panayotov, I. Prehistoric Bulgaria, Monographs in World Archaeology 22 Prehistory Press, Madison.149191.Google Scholar
Boyadžiev, J. ("iev, 1998). )Radiocarbon dating from southeastern Europe and the cultural processes during the fourth millennium B.C..Stefanovich, M., Todorova, H., Hauptmann, H. In the Steps of James Harvey Gaul 1, Sofia 349370.Google Scholar
Bozilova, E., Tonkov, S. (2000). Pollen from Lake Sedmo Rilsko reveals southeast European postglacial vegetation in the highest mountain area of the Balkans. New Phytologist 148, 315325.Google Scholar
Bravard, J.P., Peiry, J.L. (1999). The CM pattern as a tool for the classification of alluvial suites and floodplains along the river continuum. Geological Society, London. Special Publications 163, 259268.Google Scholar
Bronk Ramsey, C. (2013). OxCal 4.2. Web Interface Build. (78)Google Scholar
Broussoulis, J., Yiakkoupis, P., Arapoyannis, E., Anastasiadis, J. (1991). Drama lignite deposit geology, exploration, resources. IGME Report 1, Athens (in Greek with English Abstr.)Google Scholar
Brown, A.G. (1999). Biodiversity and pollen analysis: modern pollen studies and the recent history of a floodplain woodland in SW Ireland. Journal of Biogeography 26, 1 1932.Google Scholar
Brown, A.G. (2008). Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality. Geomorphology 101, 278297.Google Scholar
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., Esper, J. ("ntgen et al., 2011). 2500 years of European climate variability and human susceptibility. Science 331, 578582.Google Scholar
Butzer, K.W. (2012). Collapse, environment, and society. Proceedings of the National Academy of Sciences 109, 36323639.Google Scholar
Carcaillet, C., Bouvier, M., Larouche, A.C., Richard, P.J.H. (2001). Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, 476547.Google Scholar
Carrión, J.S., Navarro, C. ("n and Navarro, 2002). Cryptogam spores and other non-pollen microfossils as sources of palaeoecological information: case-studies from Spain. Annales Botanic Fennici 39, 114.Google Scholar
Clark, J.S. (1988). Particle motion and the theory of stratigraphic charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research 30, 6780.Google Scholar
Cvetkoska, A., Levkov, Z., Reed, J.M., Wagner, B. (2014). Late Glacial to Holocene climate change and human impact in the Mediterranean: the last ca. 17 ka diatom record of Lake Prespa (Macedonia/Albania/Greece). Palaeogeography, Palaeoclimatology, Palaeoecology 406, 2232.CrossRefGoogle Scholar
Darcque, P., Tsirtsoni, Z. (2010). Evidence from Dikili Tash (Eastern Macedonia, Greece) and the tell issue.Hansen, S. Leben auf dem Tell als soziale Praxis, Beiträge des Internationalen Symposiums, Rudolf Habelt., Bonn 5569.Google Scholar
Dearing, J. (1999). Magnetic susceptibility. Environmental Magnetism: A Practical Guide 6, Quaternary Research Association, London 3562.Google Scholar
Demakopoulou, K. (1996). The transition to the Bronze Age: the Neolithic heritage.Papathanasopoulos, G.A. Neolithic Culture in Greece N.P. Goulandris Foundation, Museum of Cycladic Art, Athens.191197.Google Scholar
DeMenocal, P. (2001). Cultural responses to climate change during the Late Holocene. Science 292, 667673.Google Scholar
Denèfle, M., Lézine, A.M., Fouache, E., Dufaure, J.J. (2000). A 12,000-year pollen record from Lake Maliq, Albania. Quaternary Research 54, 423432.Google Scholar
Digerfeldt, G., Sandgren, P., Olsson, S. (2007). Reconstruction of Holocene lake-level changes in Lake Xinias, central Greece. The Holocene 17, 361367.CrossRefGoogle Scholar
Dinter, D., Royden, L. (1993). Late Cenozoic extension in North-eastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex. Geology 21, 4548.2.3.CO;2>CrossRefGoogle Scholar
Dormoy, I., Peyron, O., Combourieu-Nebout, N., Goring, S., Kotthoff, U., Magny, M., Pross, J. (2009). Terrestrial climate variability and seasonality changes in the Mediterranean region between 15,000 and 4,000 years BP deduced from marine pollen records. Climate of the Past 5, 615632.CrossRefGoogle Scholar
Drake, B.L. (2012). The influence of climatic change on the Late Bronze Age collapse and the Greek Dark Ages. Journal of Archaeological Science 39, 18621870.Google Scholar
Eastwood, W.J., Leng, M.J., Roberts, N., Davis, B. (2007). Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhisar, southwest Turkey. Journal of Quaternary Science 22, 327341.Google Scholar
Faegri, K., Iversen, J. (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Faust, D., Zielhofer, C., Escudero, R.B., del Olmo, F.D. (2004). High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact?. Quaternary Science Reviews 23, 17571775.CrossRefGoogle Scholar
Finné, M., Holmgren, K., Sundqvist, H.S., Weiberg, E., Lindblom, M. (2011). Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years—a review. Journal of Archaeological Science 38, 31533173.Google Scholar
Geraga, M., Ioakim, C., Lykousis, V., Tsaila-Monopolis, S., Mylona, G. (2010). The highresolution palaeoclimatic and palaeoceanographic history of the last 24,000 years in the central Aegean Sea, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 101115.Google Scholar
Gerasimidis, A. (2000). Palynological evidence for human influence on the vegetation of Mountain Regions in Northern Greece: the case of Lailias, Serres.Halstead, P. 2000, Landscape and Land Use in Postglacial Greece. Sheffield Studies in Aegean Archaeology, Sheffield 2837.Google Scholar
Glais, A., Lopez-Saez, J.-A., Lespez, L., Davidson, R. (2016). Climate and human–environment relationships on the edge of the Tenaghi–Philippon marsh (Northern Greece) during the Neolithization process. Quaternary International 10.1016/j.quaint.2015.07.032Google Scholar
Görsdorf, J., Bojadžiev, J. ("rsdorf and Bojadžiev, 1996). Zur absoluten Chronologie der bulgarischen Urgeschichte.. Berliner 14C-Datierungen von bulgarischen archäologischen Fundplätzen. Eurasia Antiqua 2, 105173.Google Scholar
Grammenos, D. (1997). Neolithic Macedonia, Athens.(in Greek with English Abstr.)Google Scholar
Grammenos, D., Fotiadis, M. (1980). Sur les habitats préhistoriques de la Macédoine orientale. Anthrôpologika 1, 1553.(in Greek with English Abstr.)Google Scholar
Greig, J.R.A., Turner, J. (1974). Some pollen diagrams from Greece and their archaeological significance. Journal of Archaeological Science 1, 177194.Google Scholar
Grimm, E.C. (1992). Tilia Version 2. Illinois State Museum. Research and Collection Center, Springfield.Google Scholar
Heymann, C., Nelle, O., Dörfler, W., Zagana, H., Nowaczyk, N., Xue, J., Unkel, I. (2013). Late Glacial to mid-Holocene palaeoclimate development of Southern Greece inferred from the sediment sequence of Lake Stymphalia (NE-Peloponnese). Quaternary International 302, 4260.Google Scholar
Horvat, I., Glavac, V., Ellenberg, H. (1974). Vegetation Südosteuropas. Geobotanica Selecta IV Fischer, Stuttgart.Google Scholar
Jahns, S. (2005). The Holocene history of vegetation and settlement at the coastal site of Lake Voulkaria in Acarnania, Western Greece. Vegetetation History Archaeobotany 14, 5566.Google Scholar
Kaniewski, D., Van Campo, E., Guiot, J., Le Burel, S., Otto, T., Baeteman, C. (2013). Environmental roots of the Late Bronze Age crisis. PLoS ONE 8, e71004 Google Scholar
Komarek, J., Jankovska, V. (2001). Review of the green algal genus Pediastrum; implication for pollen — analytical research. Bibliotheca Phycologica 108, 1127.Google Scholar
Kotthoff, U., Koutsodendris, A., Pross, J., Schmiedl, G., Bornemann, A., Kaul, C., Marino, G., Peyron, O., Schiebel, R. (2011). Impact of Lateglacial cold events on the northern Aegean region reconstructed from marine and terrestrial proxy data. Journal of Quaternary Science 26, 1 8696.Google Scholar
Kotthoff, U., Müller, U.C., Pross, J., Schmiedl, G., Lawson, I.T., van de Schootbrugge, B., Schulz, H. (2008a). Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. The Holocene 18, 10191032.Google Scholar
Kotthoff, U., Pross, J., Müller, U.C., Peyron, O., Schmiedl, G., Schulz, H., Bordon, A. (2008b). Climate dynamics in the borderlands of the Aegean Sea during formation of Sapropel S1 deduced from a marine pollen record. Quaternary Science Reviews 27, 832845.Google Scholar
Koukouli-Chrysanthaki, H., Malamidou, M., Lespez, L. (2008). Carte archéologique de la plaine de Philippes–Drama.Koukouli-Chryssanthaki, H., Treuil, R. Dikili Tash, village prehistorique de Macédoine orientale Bibliothèque de la Société archéologique d'Athènes 254, 395414.(Athènes)Google Scholar
Kouli, K. (2015). Plant landscape and land use at the Neolithic lake settlement of Dispilió (Macedonia, northern Greece). Plant Biosystems 10.1080/11263504.2014.992998Google Scholar
Kouli, K., Gogou, A., Bouloubassi, I., Triantaphyllou, M.V., Ioakim, C., Katsouras, G., Roussakis, G., Lykousis, V. (2012). Late postglacial paleoenvironmental change in the northeastern Mediterranean region: combined palynological and molecular biomarker evidence. Quaternary International 261, 118127.Google Scholar
Kuzucuoğlu, C. (2010). Climate and environment in times of cultural changes from the 4th to the 1st mill. BC in the Near and Middle East.Cardarelli, A., Cazzella, A., Frangipane, M., Peroni, R. Reasons for Changes of Societies Between the End of the IV and the Beginning of the 1st Millennium BC (Le Ragioni del Cambiamento) Scienze delle Antichità 15, 141163.(Roma)Google Scholar
Kuzucuoğlu, C. (2014). The Neolithic in Anatolia at the regional scale. Some issues concerning chronology and environmental contexts.Arnaud-Fasetta, G., Carcaud, N. French Geoarchaeology in the 21st Century, CNRS Editions, Paris 129156.Google Scholar
Kuzucuoğlu, C., Dörfler, W., Kunesch, S., Goupille, F. (2011). Mid-to late-Holocene climate change in central Turkey: the Tecer Lake record. The Holocene 21, 173188.CrossRefGoogle Scholar
Lambeck, K., Purcell, A. (2005). Sea-level change in the Mediterranean Sea since the LGM: model predictions for tectonically stable areas. Quaternary Science Reviews 24, 19691988.Google Scholar
Lamy, F., Arz, H.W., Bond, G.C., Bahr, A., Pätzold, J. (2006). Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21, PA1008 10.1029/2005PA001184Google Scholar
Lawson, I., Frogley, M., Bryant, C., Preece, R., Tzedakis, P. (2004). The Lateglacial and Holocene environmental history of the Ioannina basin, north-west Greece. Quaternary Science Reviews 23, 15991625.Google Scholar
Lawson, I.T., Al-Omari, S., Tzedakis, P.C., Bryant, C.L., Christaniss, K. (2005). Lateglacial and Holocene vegetation history at Nisi Fen and the Boras mountains, northern Greece. The Holocene 15, 873887.Google Scholar
Lemmen, C., Wirtz, K.W. (2014). On the sensitivity of the simulated European Neolithic transition to climate extremes. Journal of Archaeological Science 51, 6572.Google Scholar
Leshtakov, K. (2006). The Bronze Age in the Upper Thracian plain. Annual of the University of Sofia, Archaeology Dept. 3, 141217.(in Bulgarian with English Abstr.)Google Scholar
Lespez, L. (2003). Geomorphic responses to long-term land use changes in Eastern Macedonia (Greece). CATENA 51, 181208.Google Scholar
Lespez, L. (2007). Les dynamiques des systèmes fluviaux en Grèce du Nord au cours des 7 derniers millénaires: vers une approche multi-scalaire des interactions Nature/Société. Géomorphologie, Relief, processus, environnement 1, 4966.Google Scholar
Lespez, L. (2008). L'évolution des paysages du Néolithique " la période ottomane dans la plaine de Philippes. Société Archéologique d'Athènes et École Française d'Athènes, Athènes.Google Scholar
Lespez, L. (2011). Territoires protohistoriques en Grèce du Nord, approche géographique et geoarchéologique.Treuil, R., Philippakis, G. Archéologie du territoire, de l'Egée au Sahara Presses Universitaires de la Sorbonne, Paris.95109.Google Scholar
Lespez, L., Dalongeville, R. (1998). Morphogenèse würmienne en Grèce du Nord: le piémont des montagnes de Lékani. Géomorphologie, Relief, Processus, Environnement 4, 331350.Google Scholar
Lespez, L., Tsirtsoni, Z., Darcque, P., Koukouli-Chrysanthaki, H., Malamidou, D., Treuil, R., Davidson, R., Kourtessi-Philippakis, G., Oberlin, C. (2013). The lowest levels at Dikili Tash, Northern Greece: a missing link in the Early Neolithic of Europe. Antiquity 87, 3045.Google Scholar
Lespez, L., Tsirtsoni, Z., Lopez Saez, J.-A., Le Drezen, Y., Glais, A. (2014). Beyond determinism: for a local approach to nature/society interactions in the southern Balkans at the transition from the Neolithic to the Bronze Age.Arnaud-Fassetta, G., Carcaud, N. French Geoarchaeology in the 21st Century, Editions du CNRS, Paris 157171.Google Scholar
Magny, M., de Beaulieu, J.L., Drescher‐Schneider, R., Vannière, B., Walter-Simonnet, A.V., Millet, L., Bossuet, G., Peyron, O. (2006). Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa. Journal of Quaternary Science 21, 311320.Google Scholar
Magny, M., Joannin, S., Galop, D., Vannière, B., Haas, J.N., Bassetti, M., Bellintanie, P., Scandolarif, R., Desmet, M. (2012). Holocene palaeohydrological changes in the northern Mediterranean borderlands as reflected by the lake-level record of Lake Ledro, northeastern Italy. Quaternary Research 77, 382396.Google Scholar
Magny, M., Combourieu Nebout, N., de Beaulieu, J.L., Bout-Roumazeilles, V., Colombaroli, D., Desprat, S., Francke, A., Joannin, S., Peyron, O., Revel, M., Sadori, L., Siani, G., Sicre2, S., Samartin, M.A., Simonneau, A., Tinner, W., Vannière, B., Wagner, B., Zanchetta, G., Anselmetti, F., Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami, L., Galop, D., Gilli, A., Haas, J.N., Kallel, N., Millet, L., Stock, A., Turon, J.L., Wirth, S. (2013). North–south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Climate of the Past 9, 20432071.Google Scholar
Malamidou, D. (2007). Kryoneri: a Neolithic and early Bronze Age settlement. The Lower Strymon Valley, Proceedings of the International Symposium Strymon Praehistoricus 27, 297308.Google Scholar
Malamidou, D. (2016). Kryoneri, Nea Kerdyllia: a settlement of the Late Neolithic and early Bronze Age on the lower Strymon valley, Eastern Macedonia.Tsirtsoni, Z. The Human Face of Radiocarbon. Reassessing Chronology in Prehistoric Greece and Bulgaria, 5000–3000 cal BC, Travaux de la Maison de l'Orient, Lyon 171180.(in press)Google Scholar
Maniatis, Y., Kromer, B. (1990). Radiocarbon dating of the Neolithic and Early Bronze Age site of Mandalo, W. Macedonia. Radiocarbon 32, 149153.Google Scholar
Maniatis, Y., Tsirtsoni, Z., Oberlin, C., Darcque, P., Koukouli-Chryssanthaki, C., Malamidou, D., Siros, Miteletsis M., Papadopoulos, S., Kromer, B. (2014). New 14C evidence for the Late Neolithic–Early Bronze Age transition in Southeast Europe. Open Journal of Archaeometry 2, 52620.4081/arc.2014.5262Google Scholar
Marino, G., Rohling, E.J., Sangiorgi, F., Hayes, A., Casford, J.L., Lotter, A.F., Kucera, M., Brinkhuis, H. (2009). Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quaternary Science Reviews 28, 32463262.Google Scholar
Marinova, E., Tonkov, S., Bozilova, E., Vajsov, I. (2012). Holocene anthropogenic landscapes in the Balkans: the palaeobotanical evidence from southwestern Bulgaria. Vegetation history and archaeobotany 21, 413427.Google Scholar
Mayewski, P.A., Rohling, E., Stager, C., Karlen, W., Maasch, K., Meeker, L.D., Meyerson, E., Gasse, F., vanKreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. (2004). Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
Mercuri, A.M., Sadori, L., Ollero, P.U. (2011). Mediterranean and north-African cultural adaptations to mid-Holocene environmental and climatic changes. The Holocene 21, 189206.Google Scholar
Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin.Google Scholar
Moore, P.D., Webb, J.-A., Collinson, M.E. (1991). Pollen Analysis. Blackwell Scientific Publications, London.Google Scholar
Nikolov, V. (2012). Salt, early complex society, urbanization: Provadia–Solnitsata (5500–4200BC).Nikolov, V., Bacvarov, K. Salt and Gold: The Role of Salt in Prehistoric Europe, Faber, Provadia–Veliko Tarnovo 1165.Google Scholar
Papadimitriou, N., Tsirtsoni, Z. (2010). Greece in the Broader Cultural Context of the Balkans During the 5th and 4th Millennium BC, Athens.(In Greek with English Abstr.)Google Scholar
Passega, R. (1957). Texture as characteristic of clastic deposition. AAPG Bulletin 41, 19521984.Google Scholar
Pasztaleniec, A., Poniewozik, M. (2004). Pediastrum species (Hydrodictyaceae sphaeropleales) in phytoplankton of Sumin Lake (Leczna–Wlodawa Lakeland). Acta Societatis Botanicorum Poloniae 73, 3946.Google Scholar
Pavlopoulos, K., Fouache, E., Sidiropoulou, M., Triantaphyllou, M., Vouvalidis, K., Syrides, G., Gonnet, A., Greco, E. (2013). Palaeoenvironmental evolution and sea-level changes in the coastal area of NE Lemnos Island (Greece) during the Holocene. Quaternary International 308, 8088.Google Scholar
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Magny, M. (2011). Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). The Holocene 21, 131146.Google Scholar
Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, J.-L., Brugiapaglia, E., Sadori, L., Garfi, G., Kouli, K., Ioakim, C., Combourieu-Nebout, N. (2013). Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data. Climate of the Past 9, 12331252.Google Scholar
Pross, J., Kotthoff, U., Müller, U.C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S., Smith, A.M. (2009). Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37, 887890.Google Scholar
Psilovikos, A. (1986). Contribution to the geomorphology of the south-western part of the Rhodope Massif (Greek East Macedonia). Geologica Balcanica 16, 2132.Google Scholar
Reille, M. (1992). Pollen et Spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille Google Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Bronk Ramsey, C., Buck, C., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T., Hoffmann, D., Hogg, A., Hughen, K., Kaiser, K., Kromer, B., Manning, S., Niu, M., Reimer, R., Richards, D., Scott, E., Southon, J., Staff, R., Turney, C., van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Renfrew, C., Gimbutas, M., and Elster, E. (1986). Excavation at Sitagroi: A Prehistoric Village in Northeast Greece, T.I University of California, Los Angeles.Google Scholar
Roberts, N., Brayshaw, D., Kuzucuoğlu, C., Perez, R., Sadori, L. (2011). The mid-Holocene climatic transition in the Mediterranean: causes and consequences. The Holocene 21, 313.Google Scholar
Rohling, E., Mayewski, P., Abu-Zied, R., Casford, J., Hayes, A. (2002). Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, 587593.Google Scholar
Stefanova, I., Ammann, B. (2003). Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). The Holocene 13, 97107.Google Scholar
Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Strid, A., Tan, K. (1997). Flora and Vegetation of North Est Greece Including Thasos and Samothraki, Copenhagen. Botanical institute, University of Copenhagen, Google Scholar
Tinner, W., Conedera, M., Ammann, B., Gaggeler, H.W., Gedye, S., Jones, R., Sagesser, B. (1998). Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. The Holocene 8, 3142.Google Scholar
Todorova, H. (1978). The Eneolithic Period in Bulgaria in the 5th Millenium B.C. BAR I.S. 49. Archaeopress, Oxford.Google Scholar
Todorova, H. (1995). The Neolithic, Eneolithic and transitional period in Bulgarian prehistory.Bailey, D.W., Panayotov, I. Prehistoric Bulgaria, Monographs in World Archaeology 22 Prehistory Press, Madison.7998.Google Scholar
Todorova, H. (2007). Die paleoklimatische Entwicklung in VII-I Jt. Vor Chr.Todorova, H., Stefanovich, M., Ivanov, G. The Struma/Strymon River Valley in Prehistory. In the Steps of James Harvey, Gerda Henkel Stiftung, Sofia 16.Google Scholar
Todorova, H., Stefanovich, M., and Ivanov, G. (2007). The Struma/Strymon river valley in Prehistory, Proceedings of the International Symposium ‘Strymon Praehistoricus’. Kjustendil-Blagoevgrad (Bulgaria) and Serres-Amphipolis (Greece, Sofia). Google Scholar
Treuil, R., Darcque, P., Poursat, J.C., and Touchais, G. (2008). Les civilisations égéennes du Néolithique et de l'Âge du Bronze PUF, Paris.Google Scholar
Triantaphyllou, M.V., Ziveri, P., Gogou, A., Marino, G., Lykousis, V., Bouloubassi, I., Emeis, K.-C., Kouli, K., Dimiza, M., Rosell-Melé, A., Papanikolaou, M., Katsouras, G., Nunez, N. (2009). Late Glacial–Holocene climate variability at the south-eastern margin of the Aegean Sea. Marine Geology 266, 182197.Google Scholar
Triantaphyllou, M.V., Gogou, A., Bouloubassi, I., Dimiza, M., Kouli, K., Rousakis, G., Kotthoff, U., Emeis, K.-C., Papanikolaou, M., Athanasiou, M., Parinos, C., Ioakim, C., Lykousis, V. (2014). Evidence for a warm and humid Mid-Holocene episode in the Aegean and northern Levantine Seas (Greece, NE Mediterranean). Regional Environmental Change 14, 16971712.Google Scholar
Tsirtsoni, Z. (2010). The end of the Neolithic period in Greece and the Balkans.Papadimitriou, N., Tsirtsoni, Z. Greece in the Broader Cultural Context of the Balkans During the 5th and 4th Millennium BC, Athens 92103.(In Greek with English Abstr.)Google Scholar
Tsirtsoni, Z. (2014). Formation or transformation? The 4th millennium BC in the Aegean and the Balkans.Horejs, B., Mehofer, M. Western Anatolia Before Troy. Proto-urbanisation in the 4th Millennium BC? Proceedings of the International Symposium Held at the Kunsthistorisches Museum Wien, Wien 275304.Google Scholar
Tsirtsoni, Z. The Human Face of Radiocarbon: Reassessing Chronology in Prehistoric Greece and Bulgaria, 5000–2000 cal BC, Travaux de la Maison de l'Orient et de la Méditerranée, Lyon(in press)Google Scholar
Valamoti, S.M. (2015). Harvesting the ‘wild’? Exploring the context of fruit and nut exploitation at Neolithic Dikili Tash, with special reference to wine. Vegetation History and Archaeobotany 24, 3546.Google Scholar
van Geel, B. (1978). A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review Palaeobotany and Palynology 25, 1120.Google Scholar
van Geel, B. (2001). Non-pollen palynomorphs.Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments, 3: Terrestrial, Algal and Silicaceous Indicators, Kluwer, Dordrecht 99119.Google Scholar
van Geel, B., Aptroot, A. (2006). Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313329.Google Scholar
van Geel, B., Bohncke, S.J.P., Dee, H. (1980/1981). A palaeoecological study of an upper Late Glacial and Holocene sequence from “De Borchert”, The Netherlands. Review Palaeobotany and Palynology 31, 367448.Google Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G., Hakbijl, T. (2003). Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.Google Scholar
Van Geel, B., Coope, G.R., Van Der Hammen, T. (1989). Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 60, 1 25129.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M. (2011). Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 31093123.Google Scholar
Weiss, H., Courty, M.A., Wetterstrom, W., Guichard, F., Senoir, L., Meadow, R., Curnow, A. (1993). The genesis and collapse of third millennium North Mesopotamian civilization. Science 261, 9951004.Google Scholar
Weninger, B., Clare, L. (2011). Holocene rapid climate change in the eastern Mediterranean. An emerging archaeological climate research programme.Krauss, R. Beginnings. New Research in the Appearance of the Neolithic Between Northwest Anatolia and the Carpathian Basin, Marie Leidorf, Rahden/Westf 1122.Google Scholar
Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, C., Kubatzki, C., Rollefson, G., Todorova, H., Van Andel, T. (2006). Climate forcing due to the 8200 cal BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research 66, 401420.CrossRefGoogle Scholar
Weninger, B., Clare, L., Rohling, E., Bar-Yosef, O., Böhner, U., Budja, M., Bundschuh, M., Feurdean, A., Gebel, H.-G., Jöris, O., Linstädter, O., Mayewski, P., Mühlenbruch, T., Reingruber, A., Rollefson, G., Schyle, D., Thissen, D., Todorova, H., Zielhofer, C. (2009). The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Documenta Praehistorica 36, 759.Google Scholar
Weninger, B., Clare, L., Gerritsen, F., Horejs, B., Krauß, R., Linstädter, J., Özbal, R., Rohling, E.J. (2014). Neolithisation of the Aegean and Southeast Europe during the 6600–6000 cal BC period of rapid climate change. Documenta Praehistorica 41, 131.Google Scholar
Whitlock, C., Anderson, R.S. (2003). Methods and interpretation of fire history reconstructions based on sediment records from lakes and wetlands.Swetnam, T.W., Montenegro, G., Veblen, T.T. Fire and Climate Change in the Americas Springer, New York.331.Google Scholar
Wiener, M.H. (2014). The interaction of climate change and agency in the collapse of civilizations c. 2300–2000 BC. Radiocarbon 56, 116.Google Scholar
Willcox, G. (2005). The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Vegetation History and Archaeobotany 14, 534541.Google Scholar
Willis, K.J. (1994). The vegetational history of the Balkans. Quaternary Science Reviews 13, 769788.Google Scholar
Zanchetta, G., Bar-Matthews, M., Drysdale, R.N., Lionello, P., Ayalon, A., Hellstrom, J.C., Isola, E., Regattieri, E. (2014). Coeval dry events in the central and eastern Mediterranean basin at 5.2 and 5.6 ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems. Global and Planetary Change 122, 130139.Google Scholar