Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T07:12:43.049Z Has data issue: false hasContentIssue false

Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications

Published online by Cambridge University Press:  05 May 2012

Weilin Zhang
Affiliation:
Department of Geosciences, Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany Institute of Tibetan Plateau Research, Chinese Academy of Science, P.O. Box 2871, Beijing 100085, China
Erwin Appel
Affiliation:
Department of Geosciences, Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Xiaomin Fang*
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Science, P.O. Box 2871, Beijing 100085, China
Chunhui Song
Affiliation:
Key Laboratory of Western China's Environmental Systems, Ministry of Education of China & College of Resources and Environment, Lanzhou University, Gansu 730000, China
Olaf Cirpka
Affiliation:
Department of Geosciences, Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
*
Corresponding author. Email Address:[email protected]

Abstract

The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6–2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S., Kutzbach, J.E., Prell, W.L., and Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since late Miocene time. Nature 411, (2001). 6266.Google Scholar
Berger, W.H., Bickert, T., Schmidt, H., Wefer, G., (1993). Quaternary oxygen isotoperecord of pelagic foraminiferas: Site 806, Ontong Java Plateau . In: Berger, MPR and the ‘eccentricity myth’. Procedings ODP, Scientific Results 130, College Station, TX (Ocean Drilling Program)., 381395.Google Scholar
Besse, J., and Courtillot, V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research 107, B11 (2002). 2300 http://dx.doi.org/10.1029/2000JB000050Google Scholar
Broccoli, A.J., and Manabe, S. The effects of orography on midlatitude Northern Hemisphere dry climates. Journal of Climate 5, (1992). 11811201.Google Scholar
Champion, D.E., Lanphere, M.A., and Kuntz, M.A. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. Journal of Geophysical Research 93, (1988). 1166711680.Google Scholar
Clark, M.K., Farley, K.A., Zheng, D., Wang, Z., and Duvall, A.R. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages. Earth and Planetary Science Letters 296, (2010). 7888.CrossRefGoogle Scholar
Cogné, J.P., Halim, N., Chen, Y., and Coutillot, V. Resolving the problem of shallow magnetizations of Tertiary age in Asia: insights from paleomagnetic data from the Qiangtang, Kunlun and Qaidam blocks (Tibet, China), and new hypothesis. Journal of Geophysical Research 104, (1999). 17,71517,734.Google Scholar
Cui, Z.J., Wu, Y.Q., Liu, G.N., Ge, D.K., (1996). The climatic and tectonic events in the Kunlun Mountains Pass Areas since the Late Cenozoic, in Study of Evolution Process, Environmental Change and Ecological System of the Tibet Plateau. (ed. Expert Committee of the Tibet Project). Science Press, Beijing. 7484. pp. (in Chinese).Google Scholar
Dupont-Nivet, G., Butler, R.F., Yin, A., and Chen, X. Paleomagnetism indicates no Neogene rotation of Qaidam basin in northern Tibet during Indo-Asian collision. Geology 30, (2002). 263266.Google Scholar
Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S., and Fang, X.M. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, (2007). 635638.Google Scholar
Fan, Q.S., Lai, Z.P., Long, H., Sun, Y.J., and Liu, X.J. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai–Tibetan Plateau. Quaternary Geochronology 5, (2010). 223227.Google Scholar
Fan, Q.S., Lai, Z.P., Liu, X.J., Sun, Y.J., and Long, H. Luminescence chronology of high lake levels of paleolakes in the Late Quaternary eastern Qaidam Basin. Acta Geologica Sinica 84, (2010). 16521660. (in Chinese) Google Scholar
Fang, X.M., Yan, M.D., Van der Voo, R., Rea, R., Song, C.H., Pares, J., Gao, G., Nie, J., and Dai, S. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the guide basin, Qinghai Province, China. Geological Society of America Bulletin 117, (2005). 12081225.Google Scholar
Fang, X.M., Zhao, Z.J., Li, J.J., Yan, M.D., Pan, B.T., Song, C.H., and Dai, S. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Science in China, Series D 48, (2005). 10401051.Google Scholar
Fang, X.M., Gao, J.P., Zhang, W.L., Wang, Y.D., and Liu, D.L. Detailed evolution of Qigequan–Yueyashan tectonics in the front of Altyn Tagh and western Qaidam Basin and selection of prospective targets. Report of Academy 2005-Kantan-JSFWHT-23. (2006). Qinghai Oil Company, 122 pp. (in Chinese) Google Scholar
Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M., King, J., Song, C.H., Dai, S., and Miao, Y.F. High-resolution magneto stratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters 258, (2007). 293306.Google Scholar
Ge, X.H., Ren, S.M., Ma, L.X., Wu, G.D., Liu, Y.J., and Yuan, S.H. Multi-stage uplifts of the Qinghai–Tibet plateau and their environmental effects. Earth Science Frontiers 13, (2006). 118130. (in Chinese) Google Scholar
Gradstein, F., Ogg, J., and Smith, A. A Geologic Time Scale 2004. (2004). Cambridge University Press, Cambridge, U.K.. 589 pp.Google Scholar
Gu, S., Xu, W., Xue, C., Di, S., Yang, F., Di, H., Zhao, D. Regional Petroleum Geology of Qinghai–Xizang Oil–Gas Field 14, (1990). Petroleum Publishing House, Beijing. 88 pp. (in Chinese) Google Scholar
Harkins, N., Kirby, E., Heimsath, A., Robinson, R., and Reiser, U. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. Journal of Geophysical Research 112, (2007). F03S04 http://dx.doi.org/10.1029/2006JF000570CrossRefGoogle Scholar
Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pitman, W.C.I.I.I., and Le Pichon, X. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research 73, (1968). 21192136.Google Scholar
Hövermann, J., and Süssenberger, H. Zur Klimageschichte Hoch- und Ostasiens. Berliner Geographische Studien 20, (1986). 173186.Google Scholar
Hou, X.H., Zheng, M.P., Zhang, C.J., Shi, L.F., and Wang, Y.D. Sedimentary Characteristics and Paleoenvironmental of Dalangtan Salt Lake in Western Qaidam Basin, Since 140 ka BP. Acta Geologica Sinica 84, (2010). 16231630. (in Chinese) Google Scholar
Hou, X.H., Zheng, M.P., Yang, Z.J., Yang, Q.H., and Bi, Z.W. Sporo-pollen assemblage and palaeoenvironment since 130 ka BP in Dalangtan Lake of Qaidam Basin. Arid Land Geography 2, (2011). 243251. (in Chinese) Google Scholar
Huang, H.C., Huang, Q.H., and Ma, Y.S. Geology of Qaidam and Petroleum Prediction. (1996). Geological Publishing House, Beijing. 257 pp. (in Chinese) Google Scholar
Kapp, P., Pelletier, J.D., Rohrmann, A., Heermance, R., Russell, J., and Ding, L. Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. Geological Society of America Bulletin 21, (2011). 410.Google Scholar
Kent-Corson, M.L., Ritts, B.D., Zhuang, G.S., Bovet, P.M., Graham, S.A., and Chamberlain, C.P. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters 282, (2009). 158166.Google Scholar
Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E. Convergence properties of the Nelder–Mead simplex method in low dimensions. Society for Industrial and Applied Mathematics Journal on Optimization 9, (1998). 112147.Google Scholar
Laj, C., and Channell, J.E.T. Geomagnetic excursions. Kono, M. Treatise in Geophysics. Geomagnetism, Encyclopedia of Geophysics 5, (2007). 373416.Google Scholar
Langereis, C.G., Dekkers, M.J., Lange, G.J., Paterne, M., and Santvoort, P.J.M. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International 129, (1997). 7594.CrossRefGoogle Scholar
Lease, R.O., Burbank, D.W., Gehrels, G.E., Wang, Z., and Yuan, D. Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 35, (2007). 239242.CrossRefGoogle Scholar
Li, J.J., Fang, X.M., Ma, H.Z., Zhu, J.J., Pan, B.T., and Chen, H.L. The evolution of the Yellow river geomorgraphy and the uplift of Tibetan plateau. Science in China, Series D 26, (1996). 316322.Google Scholar
Li, J.J., Fang, X.M., Van der Voo, R., Zhu, J.J., MacNiocaill, C., Cao, J.X., Zhong, W., Chen, H.L., Wang, J.L., Wang, J.M., and Zhang, Y.T. Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongshanding and Wangjiashan sections in Longzhong Basin, western China. Geologie en Mijnbouw 76, (1997). 121134.Google Scholar
Li, J.J., and Fang, X.M. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin 44, (1999). 21172124.Google Scholar
Liu, D.L., Fang, X.M., Song, C.H., Dai, S., Zhang, T., Zhang, W.L., Miao, Y.F., Liu, Y.Q., and Wang, J.Y. Stratigraphic and paleomagnetic evidence of mid-Pleistocene rapid deformation and uplift of the NE Tibetan Plateau. Tectonophysics 486, (2010). 108119.Google Scholar
Liu, Z.C., Sun, S.Y., Yang, F., and Zhou, Z.H. Quaternary stratigraphy and its chronology analysis from Sanhu region of Qaidam basin. Science in China. Series B 11, (1990). 12011212.Google Scholar
Liu, Z.C., Wang, Y., Chen, Y., Li, X., and Li, Q. Magnetostratigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3000 m thick sequence in the central Qaidam basin, western China. Palaeogeogaphy, Palaeoclimatology, Palaeoecology 140, (1998). 459473.Google Scholar
Lu, H.J., and Xiong, S.F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters 288, (2009). 539550.Google Scholar
Lund, S., Stoner, J.S., Channell, J.E.T., and Acton, G. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planetary Interiors 156, (2006). 194204.Google Scholar
Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Guo, S.M., and Chen, Z.T. Crustal thickening in Gansu–Qinghai, lithospheric mantle subduction, and oblique, strike–slip controlled growth of the Tibetan plateau. Geophysical Journal International 135, (1998). 147.Google Scholar
Molnar, P., Boos, W.R., and Battisti, D.S. Orographic Controls on Climate and Paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences 38, (2010). 77102.Google Scholar
Pan, B.T., Su, H., Hu, Z.B., Hu, X.F., Gao, H.S., Li, J.J., and Kirby, E. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China. Quaternary Science Reviews 28, (2009). 32813290.Google Scholar
Pan, B.T., Geng, H.P., Hu, X.F., Sun, R.H., and Wang, C. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, N.W. China. Earth and Planetary Science Letters 292, (2010). 148157.Google Scholar
Pan, G., Ding, J., Yao, D., and Wang, L. Geological Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas. (2004). Chengdu Cartographic Publishing House, Chengdu. 48 pp.Google Scholar
Raymo, M.E., and Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 359, (1992). 117122.Google Scholar
Roberts, A.P. Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters 134, (1995). 227236.Google Scholar
Ruddiman, W.F., Prell, W.L., and Raymo, M.E. Late Cenozoic uplift in Southern Asian and the American West: rationale for the general circulation modeling experiments. Journal of Geophysical Research 94, (1989). 18,37918,391.Google Scholar
Shackleton, N.J., Berger, A., and Peltier, W.R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh, Earth Science 81, (1990). 251261.Google Scholar
Shen, Z.S., Cheng, G., and Le, C.S. The Division and Sedimentary Environment of Quaternary Salt-bearing Strata in Qaidam Basin. (1993). Geological Publishing House, Beijing. 167 pp. (in Chinese) Google Scholar
Shi, L.F., Zheng, M.P., Li, J.S., Wang, Y.D., Hou, X.H., and Ma, N.N. Magnetostratigraphy of Liang ZK05 borehole in Dalangtan, Qaidam Basin. Acta Geologica Sinica 84, (2010). 16311640. (in Chinese) Google Scholar
Song, C.H., Gao, D.L., Fang, X.M., Cui, Z.J., Li, J.J., Yang, S.L., Jin, H.B., Burbank, D., and Kirschvink, J.L. High-resolution magnetostratigraphy of late Cenozoic sediments from the Kunlun Shan Pass Basin and its implications on deformation and uplift of the northern Tibetan Plateau. Chinese Science Bulletin 50, (2005). 19121922.Google Scholar
Sun, Z.M., Yang, Z.Y., Pei, J.L., Ge, X.H., Wang, X.S., Yang, T.S., Li, W.M., and Yuan, S.H. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan Plateau. Earth and Planetary Science Letters 237, (2005). 635646.Google Scholar
Sun, D., Bloemendal, J., Yi, Z., Zhu, Y., Wang, X., Zhang, Y., Li, Z., Wang, F., Han, F., and Zhang, Y. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: implications for the desertification of the Tarim Basin. Palaeogeogaphy, Palaeoclimatology, Palaeoecology 300, (2010). 110.Google Scholar
Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J.S. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 23 (2001). 16711677.Google Scholar
Thomas, J.C., Chauvin, A., Gapais, D., Bazhenov, M.L., Perroud, H., Cobbold, P.R., and Burtman, V.S. Paleomagnetic evidence for Conozoic block rotations in the Tadjik Depression (Central Asia). Journal of Geophysical Research 99, (1994). 15,14115,160.Google Scholar
Thouveny, N., Bourlès, D.L., Saracco, G., Carcaillet, J., and Bassinot, F. Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo?. Earth and Planetary Science Letters 275, (2008). 269284.Google Scholar
Valencio, D.A., Linares, E., and Vilas, J.F. On the age of the Matuyama–Gauss transition. Earth and Planetary Science Letters 8, (1970). 179182.Google Scholar
Wang, E., Feng, Y.X., Zhou, J.X., Wan, J.L., and Burchfiel, B.C. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. Geological Society of America Bulletin 118, (2006). 349365.Google Scholar
Wang, J.T., Derbyshire, E., and Shaw, J. Preliminary magnetostratigraphy of Dabusun Lake, Qaidam Basin, Central Asia. Physics of the Earth and Planetary Interiors 44, (1986). 4146.Google Scholar
Wang, X.M., Qiu, Z.D., Li, Q., Wang, B.Y., Qiu, Z.X., William, R.D., Xie, G.P., Xie, J.Y., Deng, T., Takeuchi, G.T., Tseng, Z.J., Chang, M.M., Liu, J., Wang, Y., Biasatti, D., Sun, Z.C., Fang, X.M., and Meng, Q.Q. Vertebrate paleontology, biostratigraphy, geochronology and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogaphy, Palaeoclimatology, Palaeoecology 254, (2007). 363385.Google Scholar
Wang, Y.D., Fang, X.M., Gao, J.P., Liu, D.L., Zhang, X.Z., and Zhang, W.L. The fault types and the implication of petrolic prospect in the west of the Qaidam Basin. Chinese Journal of Geology 44, (2009). 791810. (in Chinese) Google Scholar
Xia, W.C., Zhang, N., Yuan, X.P., Fan, L.S., and Zhang, B.S. Cenozoic Qaidam basin, China: a stronger tectonic inversed, extensional rifted basin. American Association of Petroleum Geologists Bulletin 85, (2001). 715736.Google Scholar
Yan, M.D., Van der Voo, R., Tauxe, L., Fang, X.M., and Pares, J.M. Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error. Geophysical Journal International 163, (2005). 944948.CrossRefGoogle Scholar
Yang, X., Scuderi, L., Paillou, P., Liu, Z., Li, H., and Ren, X. Quaternary environmental changes in the drylands of China — a critical review. Quaternary Science Reviews 30, (2011). 32193536.Google Scholar
Yin, A., Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P., Chen, X.H., Gehrels, G.E., and McRivette, M.W. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan–Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin 120, (2008). 813846.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.Google Scholar
Zan, J.B., Fang, X.M., Yang, S.L., Nie, J.S., and Li, X.Y. A rock magnetic study of loess from the West Kunlun Mountains. Journal of Geophysical Research 115, (2010). B10101 http://dx.doi.org/10.1029/2009JB007184Google Scholar
Zhang, W.L., (2006). Cenozoic uplift of the Tibetan Plateau: evidence from high resolution magnetostratigraphy of the Qaidam Basin . PhD thesis, Lanzhou University, .Google Scholar
Zhao, Z.J., Fang, X.M., Li, J.J., Pan, B.T., Yan, M.D., and Shi, Z.T. Paleomagnetic dating of the Jiuquan Gravel in the Hexi Corridor: implication on mid-Pleistocene uplift of the Qinghai–Tibetan Plateau. Chinese Science Bulletin 46, (2001). 20012005.Google Scholar
Zhou, J., Xu, F., Wang, T., Gao, A., and Yin, C. Cenozoic deformation history of the Qaidam Basin, NW China: results from cross-section restoration and implications for Qinghai–Tibet Plateau tectonics. Earth and Planetary Science Letters 243, (2006). 195210.CrossRefGoogle Scholar