Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T01:32:45.290Z Has data issue: false hasContentIssue false

Latitudinal and Downcore (0–750 ka) Changes in Nalkane Chain Lengths in the Eastern Equatorial Pacific

Published online by Cambridge University Press:  20 January 2017

Keiji Horikawa*
Affiliation:
Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku 783-8502, Japan Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Masafumi Murayama
Affiliation:
Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku 783-8502, Japan
Masao Minagawa
Affiliation:
Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
Yoshihisa Kato
Affiliation:
School of Marine Science and Technology, Tokai University, Shizuoka 424-8610, Japan
Takuya Sagawa
Affiliation:
Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku 783-8502, Japan
*
*Corresponding author. Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. Fax: +81 52 789 3033.E-mail address:[email protected] (K. Horikawa).

Abstract

The n-alkane C31/(C29+C31) ratios from surface sediments in the eastern equatorial Pacific (EEP) exhibit higher values to the north and lower values to the south across the southern edge (2–4°N) of the Intertropical Convergence Zone (ITCZ). Since plants tend to synthesize longer chain length n-alkanes in response to elevated temperature and/or aridity, the higher C 31/(C29+C31) ratios at northern sites suggest a higher contribution of vegetation under hot and/or dry conditions. This is consistent with the observation that northern sites receive higher levels of plant waxes transported by northeasterly trade winds from northern South America, where hot and dry conditions prevail. Furthermore, from a sediment core covering the past 750 ka (core HY04; 4°N, 95°W) we found that C31/(C29+C31) ratios exhibit a long-term decrease from MIS (marine oxygen isotope stage) 17 to 13. During this period, the zonal SST (sea-surface temperature) gradient in the equatorial Pacific increased, suggesting an increase in Walker circulation. Such intensified Walker circulation may have enhanced moisture advection from the equatorial Atlantic warm pool to the adjacent northern South America, causing arid regions in northern South America to contract, which may explain long-term decrease in n-alkane chain lengths.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.F., Fleisher, M.O., Lao, Y., (2006). Glacial–interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth and Planetary Science Letters 242, 406414.CrossRefGoogle Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001). Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.CrossRefGoogle ScholarPubMed
Becquey, S., Gersonde, R., (2003). A 0.55-Ma paleotemperature record from the Subantarctic zone: implications for Antarctic Circumpolar Current development. Paleoceanography 18, 1014 .CrossRefGoogle Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Boom, A., Marchant, R., Hooghiemstra, H., Sinninghe Damsté, J.S., (2002). CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2 . Palaeogeography, Palaeoclimatology, Palaeoecology 177, 151168.CrossRefGoogle Scholar
Broccoli, A.J., Dahl, K.A., Stouffer, R.J., (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters 33, L01702 .CrossRefGoogle Scholar
Chiang, J.C., Biasutti, M., Battisti, D.S., (2003). Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography 18, 1094 .CrossRefGoogle Scholar
Chiang, J.C., Bitz, C.M., (2005). Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, 477496..CrossRefGoogle Scholar
Clapperton, C.M., (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Conte, M.H., Weber, C.J., (2002). Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis. Nature 417, 639641.CrossRefGoogle ScholarPubMed
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., Viana, O., (2005). Insolation driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle Scholar
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., Beaufort, L., (2005). Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294298.CrossRefGoogle ScholarPubMed
Dodd, R.S., Rafii, Z.A., (2000). Habitat-related adaptive properties of plant cuticular lipids. Evolution 54, 14381444.CrossRefGoogle ScholarPubMed
Dodd, R.S., Rafii, Z.A., Power, A.B., (1998). Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytology 138, 699708.CrossRefGoogle Scholar
Dupont, L.M., Donner, B., Schneider, R., Wefer, G., (2001). Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29, 195198.2.0.CO;2>CrossRefGoogle Scholar
Eglinton, J.R., Hamilton, R.J., (1967). Leaf epicuticular waxes. Science 156, 13221335.CrossRefGoogle ScholarPubMed
Gagosian, R.B., Peltzer, E.T., Merrill, J.T., (1987). Long-range transport of terrestrially derived lipids in aerosols from the South Pacific. Nature 325, 800803.CrossRefGoogle Scholar
Gonzàlez, C., Dupon, L.M., Behling, H., Wefer, G., (2008). Neotropical vegetation response to rapid climate changes during the last glacial period: palynological evidence from the Cariaco Basin. Quaternary Research 69, 217230.CrossRefGoogle Scholar
Gregory, G.L., Westberg, D.J., Shipham, M.C., Blake, D.R., Newell, R.E., Fuelberg, H., Talbot, E.R.W., Heikes, B.G., Atlas, E.L., Sachse, G.W., Anderson, B.A., Thornton, D.C., (1999). Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone. Journal of Geophysical Research 104, D5, 56775696.CrossRefGoogle Scholar
Griffin, J.J., Windom, H., Goldberg, E.D., (1968). The distribution of clay minerals in the world ocean. Deep-Sea Research 15, 433459.Google Scholar
Guo, Z.T., Biscaye, P., Wei, L.Y., Chen, X.F., Peng, S.Z., Liu, T.S., (2000). Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 27, 17511754.CrossRefGoogle Scholar
Guo, Z.T., Berger, A., Yin, Q.Z., Qin, L., (2009). Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctic ice records. Climate of Past 5, 2131.CrossRefGoogle Scholar
Harris, S.E., Mix, A.C., King, T., (1997). Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports Pliocene–Pleistocene deep-water linkage between hemispheres. Proceedings ODP, Scientific Results 154, 331345.Google Scholar
Hayakawa, K., Handa, N., Ikuta, N., Fukuchi, M., (1996). Downward fluxes of fatty acids and hydrocarbons during a phytoplankton bloom in the austral summer in Breid Bay, Antarctica. Organic Geochemistry 24, 511521.CrossRefGoogle Scholar
Herbert, T.D., (2003). Alkenone paleotemperature determinations. Elderfield, H., The Oceans and Marine Geochemistry, Treatise on Geochemistry 6, Elsevier-Pergamon, Oxford., 391432.CrossRefGoogle Scholar
Horikawa, K., Minagawa, M., Murayama, M., Kato, Y., Asahi, H., (2006). Spatial and temporal sea-surface temperatures in the eastern equatorial Pacific over the past 150 kyr. Geophysical Research Letters 33, 13605 .CrossRefGoogle Scholar
Huang, Y., Street-Perrott, F.A., Perrott, F.A., Metzger, P., Eglinton, G., (1999). Glacial–interglacial environmental changes inferred from the molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta 63, 13831404.CrossRefGoogle Scholar
Huang, Y., Dupont, L., Sarnthein, M., Hayes, J.M., Eglinton, G., (2000). Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochimica et Cosmochimica Acta 64, 35053513.CrossRefGoogle Scholar
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., Freeman, K.H., (2001). Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.CrossRefGoogle ScholarPubMed
Hughen, K., Eglinton, T., Xu, L., Makou, M., (2004). Abrupt tropical vegetation response to rapid climate changes. Science 304, 19551959.CrossRefGoogle ScholarPubMed
Jacob, J., Huang, Y., Disnar, J.-R., Sifeddine, A., Boussafir, M., Albuquerque, A.L.S., Turcq, B., (2007). Paleohydrological changes during the last deglaciation in Northern Brazil. Quaternary Science Reviews 26, 10041015.CrossRefGoogle Scholar
Jones, C.E., Halliday, A.N., Rea, D.K., Owen, R.M., (1994). Neodymium isotopic variations in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth and Planetary Science Letters 127, 5566.CrossRefGoogle Scholar
Jones, C.E., Halliday, A.N., Rea, D.K., Owen, R.M., (2000). Eolian inputs of lead to the North Pacific. Geochimica et Cosmochimica Acta 64, 14051416.CrossRefGoogle Scholar
Kukla, G., Cilek, V., (1996). Plio-Pleistocene megacycles: record of climate and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 171194.CrossRefGoogle Scholar
Li, T., Philander, S.G.H., (1996). On the annual cycle of the eastern equatorial Pacific. Journal of Climate 9, 29862998.2.0.CO;2>CrossRefGoogle Scholar
Li, Q., Wang, P., Zhao, Q., Tian, J., Cheng, X., Jian, Z., Zhong, G., Chen, M., (2008). Paleoceanography of the mid-Pleistocene South China Sea. Quaternary Science Reviews 27, 12171233..CrossRefGoogle Scholar
Lichtfouse, E., Derenne, S., Mariotti, A., Largeau, C., (1994). Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry 22, 10231027.CrossRefGoogle Scholar
Lichtfouse, E., Eglinton, T., (1995). 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry 23, 969973.CrossRefGoogle Scholar
Lisiecki, E.L., Raymo, E.M., (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 .Google Scholar
Liu, Z., Herbert, T.D., (2004). High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720723.CrossRefGoogle ScholarPubMed
Luo, C., Mahowald, N.M., del Corral, J., (2003). Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. Journal of Geophysical Research–Atmosphere 108, 4447 .CrossRefGoogle Scholar
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F., (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453 .Google ScholarPubMed
Marlowe, I.T., Brassell, S.C., Eglinton, G., Green, J.C., (1990). Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chemical Geology 88, 349375.CrossRefGoogle Scholar
McGee, D., Marcantonio, F., Lynch-Stieglitz, J., (2007). Deglacial changes in dust flux in the eastern equatorial Pacific. Earth and Planetary Science Letters 257, 215230.CrossRefGoogle Scholar
Medina-Elizalde, M., Lea, D.W., (2005). The Mid-Pleistocene Transition in the tropical Pacific. Science 310, 10091012.CrossRefGoogle ScholarPubMed
Mohtadi, M., Hebbeln, D., Nunez Ricardo, S., Lange, C.B., (2006). El Ninõ-like pattern in the Pacific during marine isotope stages (MIS) 13 and 11?. Paleoceanography 21, PA1015 .CrossRefGoogle Scholar
Mora, G., Pratt, L.M., (2002). Carbon isotopic evidence from paleosols for mixed C3/C4 vegetation in the Bogota Basin, Colombia. Quaternary Science Reviews 21, 985995.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M., (1997). The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151, 117123.CrossRefGoogle Scholar
Ohkouchi, N., Kawamura, K., Kawahata, H., Taira, A., (1997). Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific. Geochimica et Cosmochimica Acta 61, 19111918.CrossRefGoogle Scholar
Poynter, J.G., Farrimond, P., Robinson, N., Eglinton, G., (1989). Aeolian-derived higher plant lipids in the marine sedimentary record: links with palaeoclimate, in Paleoclimatology and Paleometeorology. Leine, M., Sarnthein, M., Modern and Past Patterns of Global Atmospheric Transport Kluwer Academic Publishers, Norwell., 435462.Google Scholar
Prahl, F.G., Mix, A.C., Sparrow, M.A., (2006). Alkenone paleothermometry: biological lessons from marine sediment records off western South America. Geochimica et Cosmochimica Acta 70, 101117.CrossRefGoogle Scholar
Prospero, J.M., Bonatti, E., (1969). Continental dust in the atmosphere of the eastern equatorial Pacific. Journal of Geophysical Research 74, 33623371.CrossRefGoogle Scholar
Raymo, M.E., Oppo, D.W., Curry, W.B., (1997). The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanography 12, 546559.CrossRefGoogle Scholar
Rommerskirchen, F., Eglinton, G., Dupont, L., Guntner, U., Wenzel, C., Rullkotter, J., (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific ?13C land plant biomarker and pollen records. Geochemistry, Geophysics, Geosystems 4, 12, 1101 .CrossRefGoogle Scholar
Rommerskirchen, F., Eglinton, G., Dupont, L., Rullkotter, J., (2006). Glacial/interglacial changes in southern Africa: compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments. Geochemistry, Geophysics, Geosystems 7, Q08010 .CrossRefGoogle Scholar
Schefu, E., Schouten, S., Fred Jansen, J.H., Sinninghe Damsté, J.S., (2003a). African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422, 418421.CrossRefGoogle Scholar
Schefu, E., Ratmeyer, V., Stuut, J.-B.W., Jansen, J.H.F., Sinninghe Damsté, J.S., (2003b). Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica et Cosmochimica Acta 67, 17571767.CrossRefGoogle Scholar
Schefu, E., Sinninghe Damsté, J.S., Jansen, J.H.F., (2004). Forcing of tropical Atlantic sea surface temperatures during the mid-Pleistocene transition. Paleoceanography 19, PA4029 .Google Scholar
Shackleton, N.J., Berger, A., Peltier, W.R., (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh, Earth Sciences 81, 251261.CrossRefGoogle Scholar
Shyu, J.-P., Chen, M.-P., Shieh, Y.-T., Huang, C.-K., (2001). A Pleistocene paleoceanographic record from the north slope of the Spratly Islands, southern South China Sea. Marine Micropaleontology 42, 6193.CrossRefGoogle Scholar
Shepherd, T., Griffiths, D.W., (2006). The effects of stress on plant cuticular waxes. New Phytologist 171, 469499..CrossRefGoogle ScholarPubMed
Simoneit, B.R.T., (1984). Organic matter of the troposphere: III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmospheric Environment 18, 5167.CrossRefGoogle Scholar
Srinivasan, J., Smith, G., (1996). Meridional migration of tropical convergence zones. Journal of Climate 9, 11891202.Google Scholar
Standley, L.J., Simoneit, B.R.T., (1987). Composition of extractable organic matter in smoke particles from prescribed burns. Environmental Science and Technology 21, 163169.CrossRefGoogle Scholar
Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S., (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochemical Cycles 17, 1006 .CrossRefGoogle Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., Olago, D.O., (1997). Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, 14221426.CrossRefGoogle ScholarPubMed
Suganuma, Y., Yamazaki, T., Kanamatsu, T., (2009). South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies. Quaternary Science Reviews 28, 926938.CrossRefGoogle Scholar
Sun, Y., Chen, J., Clemens, S.C., Liu, Q., Ji, J., Tada, R., (2006). East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems 7, Q12Q02 .CrossRefGoogle Scholar
Ternois, Y., Sicre, M.-A., Boireau, A., Beaufort, L., Miquel, J.-C., Jeandel, C., (1998). Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean. Organic Geochemistry 28, 489501.CrossRefGoogle Scholar
Thompson, L.G., Thompson, E.M., Henderson, K.A., (2000). Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, 377394.3.0.CO;2-L>CrossRefGoogle Scholar
Timmermann, A., Lorenz, S.J., An, S.-I., Clement, A., Xie, S.-P., (2007). The effect of orbital forcing on the mean climate and variability of the tropical Pacific. Journal of Climate 20, 41474159.CrossRefGoogle Scholar
Tulloch, A.P., (1976). Chemistry of waxes of higher plants. Kolattukudy, P.E., Chemistry and Biochemistry of Natural Waxes Elsevier, Amsterdam., 235287.Google Scholar
Vogts, A., Moossen, H., Rommerskirchen, F., Rullktter, J.r., (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Organic Geochemistry 40, 10371054.CrossRefGoogle Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.-C., (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.CrossRefGoogle ScholarPubMed
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., Solheid, M., (2007). Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, L23701 .CrossRefGoogle Scholar
Yamamoto, M., Yamamuro, M., Tada, R., (2000). Late Quaternary records of organic carbon, calcium carbonate and biomarkers from Site 1016 off Point Conception, California margin. Proceedings ODP, Scientific Results 167, 183194.Google Scholar
Zender, C.S., Bian, H.S., Newman, D., (2003). Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. Journal of Geophysical Research 108, D14, 4416 .CrossRefGoogle Scholar
Zhang, Z., Zhao, M., Lu, H., Faiia, A.M., (2003). Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau. Earth and Planetary Science Letters 214, 467481..CrossRefGoogle Scholar
Supplementary material: PDF

Horikawa et al. Supplementary Material

Supplementary Material

Download Horikawa et al. Supplementary Material(PDF)
PDF 1.6 MB
Supplementary material: PDF

Horikawa et al. Supplementary Material

Supplementary Material

Download Horikawa et al. Supplementary Material(PDF)
PDF 59 KB