Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T22:17:55.788Z Has data issue: false hasContentIssue false

Late Quaternary glaciation and equilibrium-line altitudes of the Mayan Ice Cap, Guatemala, Central America

Published online by Cambridge University Press:  20 January 2017

Alex J. Roy
Affiliation:
University of Nevada, Las Vegas, Department of Geoscience, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
Matthew S. Lachniet*
Affiliation:
University of Nevada, Las Vegas, Department of Geoscience, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
*
Corresponding author. Fax: +702 895 4064. E-mail addresses:[email protected] (A.J. Roy). [email protected] (M.S. Lachniet).

Abstract

The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000–3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area–altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110–1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km–1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Maryland Department of the Environment, Wetlands and Waterways Program, 1800 Washington Blvd., Baltimore, Maryland, 21230-4170, USA.

References

Anderson, T.H. First evidence for glaciation in Sierra Los Cuchumatanes Range, northwestern Guatemala. Geological Society of America Special Paper 121, (1969). 387 Google Scholar
Anderson, T.H. Geology of the San Sebastian Huehuetenango Quadrangle. (1969). University of Texas, Austin, Guatemala.Google Scholar
Anderson, T.H., Burkart, B., Clemons, R.E., Bohnenberger, O.H., and Blount, D.N. Geology of the Western Altos Cuchumatanes, Northwestern Guatemala. (1973). Google Scholar
Ballantyne, A.P., Lavine, M., Crowley, T.J., Liu, J., and Baker, P.B. Meta-analysis of tropical surface temperatures during the last glacial maximum. Geophysical Research Letters 32, (2005). doi:10.1029/GL021217Google Scholar
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, (2000). 13211324.Google Scholar
Benn, D.I., and Evans, D.J.A. Glaciers and Glaciation. (1998). John Wiley & Sons, New York.Google Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., and Mark, B., (2005). Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers Quaternary International. 138139., 821.Google Scholar
Blake, S.F. New Asteraceae from Guatemala and Costa Rica collected by A.F. Skutch. Journal of the Washington Academy of Science 24, (1934). 432443.Google Scholar
Bradley, R.S., Keimig, F.T., Diaz, H.F., and Hardy, D.R. Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophysical Research Letters 36, (2009). Google Scholar
Broecker, W.S. Mountain glaciers; recorders of atmospheric water vapor content?. Global Biogeochemical Cycles 11, (1997). 589597.Google Scholar
Bundschuh, J., Birkle, P., Finch, R.C., Day, M., Romero, J., Paniagua, S., Alvarado, G.E., Bhattacharya, P., Tippmann, K., and Chaves, D. Geology-related tourism for sustainable development. Bundschuh, J., and Alvarado, G.E. Central America: Geology, Resources and Hazards. (2007). Taylor & Francis, London. 10151098.Google Scholar
Bundschuh, J., Winograd, M., Day, M., and Alvarado, G.E. Geographical, social, economic, and environmental framework and developments. Bundschuh, J., and Alvarado, G.E. Central America: Geology, Resources and Hazards. (2007). Taylor & Francis, London. 152.Google Scholar
Bush, M.B., Correa-Metrio, A., Hodell, D.A., Brenner, M., Anselmetti, F.S., Ariztegui, D., Mueller, A.D., Curtis, J.H., Grzesik, D.A., Burton, C., and Gilli, A. Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. Vimeaux, F., Sylvestre, F., and Khodri, M. Past climate variability in South America and Surrounding Regions. (2009). Springer, Paris. 113128.Google Scholar
CLIMAP The surface of the ice-age Earth. Science 191, (1976). 11311137.Google Scholar
Crowley, T.J. CLIMAP SSTs re-revisited. Climate Dynamics 16, (2000). 241255.Google Scholar
Enjalbert, H. Les montagnes calcaires du Mexique et du Guatemala. Annales de Geographie 76, (1967). 2559.Google Scholar
Flower, B.P., Hastings, D.W., Hill, H.W., and Quinn, T.M. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico. Geology 32, (2004). 597600.Google Scholar
Furbish, D.J., and Andrews, J.T. The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass balance. Journal of Glaciology 30, (1984). 199211.Google Scholar
Hastenrath, S. Spuren pleistozaener Vereisung in den Altos de Cuchumatanes, Guatemala. Traces of Pleistocene glaciation in the Altos de Cuchumatanes, Guatemala. Eiszeitalter und Gegenwart 25, (1974). 2534.Google Scholar
Hodell, D.A., Anselmetti, F.S., Ariztegui, D., Brenner, M., Curtis, J.H., Gilli, A., Grzesik, D.A., Guilderson, T.J., Muller, A.D., Bush, M.B., Correa-Metrio, A., Escobar, J., and Kutterolf, S. An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews 27, (2008). 11521165.Google Scholar
Hooghiemstra, H., Cleef, A.M., Noldus, G.W., and Kappelle, M. Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area; Cordillera de Talamanca, Costa Rica. Journal of Quaternary Science 7, (1992). 205225.Google Scholar
Horn, S.P. Timing of deglaciation in the Cordillera de Talamanca, Costa Rica. Climate Research 1, (1990). 8183.Google Scholar
INSIVUMEH Aerial stereophotographs, approximate 1:50,000 scale, Guatemala City. (2007). Google Scholar
INSIVUMEH Climate Data for Guatemala. (2008). http://www.insivumeh.gob.gt/meteorologia/ESTADISTICAS.htm. Accessed 12/08, Guatemala City Google Scholar
Islebe, G., and Hooghiemstra, H. Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews 16, (1997). 589604.Google Scholar
Kageyama, M., Harrison, S.P., and Abe-Ouchi, A. The depression of tropical snowlines at the last glacial maximum: What can we learn from climate model experiments?. Quaternary International 138–139, (2005). 202219.Google Scholar
Kaser, G., and Osmaston, H. Tropical Glaciers. (2002). Cambridge University Press, Cambridge.Google Scholar
Lachniet, M.S. Glacial Geology and Geomorphology. Bundschuh, J., and Alvarado, G. Central America: Geology, Resources, and Hazards. (2007). Taylor & Francis, London. 171182.Google Scholar
Lachniet, M.S., and Seltzer, G.O. Late Quaternary glaciation of Costa Rica. Geological Society of America Bulletin 114, (2002). 547558.Google Scholar
Lachniet, M.S., and Vazquéz-Selem, L., (2005). Last Glacial Maximum equilibrium line altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quaternary International 138139C., 129144.Google Scholar
Lea, D.W. The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. Journal of Climate 17, (2004). 21702179.Google Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., and Hughen, K.A. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, (2003). 13611364.Google Scholar
Leyden, B.W. Late Pleistocene climate in the Central American lowlands. Swart, P.K., Lohmann, K.L., McKenzie, J., and Savin, S. Climate Change in Continental Isotopic Records. (1993). American Geophysical Union, Washington, DC. 165210.Google Scholar
Leyden, B.W., Brenner, M., Hodell, D.A., and Curtis, J.H. Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36-ka. Palaeogeography Palaeoclimatology Palaeoecology 109, (1994). 193210.Google Scholar
Mark, B.G., and Helmens, K.F. Reconstruction of glacier equilibrium-line altitudes for the last glacial maximum on the high plain of Bogotá́, Eastern Cordillera, Colombia: climatic and topographic implications. Journal of Quaternary Science 20, (2005). 789800.Google Scholar
Mark, B.G., Harrison, S.P., Spessa, A., New, M., Evans, D.J.A., and Helmens, K.F. Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138–139, (2005). 168201.Google Scholar
Marshall, J.S. Geomorphology and physiographic provinces. Bundschuh, J., and Alvarado, G.E. Central America: Geology, Resources and Hazards. (2007). Taylor & Francis, London. 75122.Google Scholar
Nesje, A., and Dahl, S.O. Glaciers and Environmental Change. (2000). Arnold, London.Google Scholar
Oerlemans, J. Quantifying global warming from the retreat of glaciers. Science 264, (1994). 243245.Google Scholar
Orvis, K., and Horn, S. Quaternary glaciers and climate on Cerro Chirripo, Costa Rica. Quaternary Research 54, (2000). 2437.Google Scholar
Osmaston, H. Estimates of glacier equilibrium line altitudes by the area × altitude, area × altitude balance ratio, and the area × altitude balance index methods and their validation. Quaternary International 238–239, (2005). 2232.Google Scholar
Osmaston, H.A. Should Quaternary sea-level changes be used to correct glacier ELAs, vegetation belt altitudes and sea level temperatures for inferring climate changes?. Quaternary Research 65, (2006). 244 Google Scholar
Paterson, W.S.B. The Physics of Glaciers. (1981). Pergamon Press, Google Scholar
Porter, S.C. Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews 20, (2001). 10671091.Google Scholar
Portig, W.H. Central American rainfall. Geographical Review 55, (1965). 6890.Google Scholar
Rea, B.R. Defining modern day area–altitude balance ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews 28, (2009). 237248.Google Scholar
Rind, D., and Peteet, D.M. Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates; are they consistent?. Quaternary Research (New York) 24, (1985). 122.Google Scholar
Schultz, D.M., Bracken, W.E., and Bosart, L.F. Planetary- and synoptic-scale signatures associated with Central American cold surges. Monthly Weather Review 126, (1998). 527.Google Scholar
Seltzer, G.O. Climatic interpretation of alpine snowline variations on millennial time scales. Quaternary Research (New York) 41, (1994). 154159.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., and Dunbar, R.B. Early warming of tropical South America at the last glacial–interglacial transition. Science 296, (2002). 16851686.Google Scholar
Stansell, N.D., Polissar, P.J., and Abbott, M.B. Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes. Quaternary Research 67, (2007). 115127.Google Scholar