Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T06:34:25.490Z Has data issue: false hasContentIssue false

A late Pleistocene long pollen record from Lake Urmia, Nw Iran

Published online by Cambridge University Press:  20 January 2017

Morteza Djamali*
Affiliation:
Institut Méditerranéen d'Ecologie et de Paléoécologie UMR 6116 du CNRS — Europôle Méditerranéen de l'Arbois — Pavillon Villemin — BP 80, 13545 Aix-en-Provence Cedex 04, France
Jacques-Louis de Beaulieu
Affiliation:
Institut Méditerranéen d'Ecologie et de Paléoécologie UMR 6116 du CNRS — Europôle Méditerranéen de l'Arbois — Pavillon Villemin — BP 80, 13545 Aix-en-Provence Cedex 04, France
Madjid Shah-hosseini
Affiliation:
Iranian National Center for Oceanography (INCO), No.9 Etemad Zadeh Street, West Fatemi Ave., 14155-4781 Tehran, Iran
Valérie Andrieu-Ponel
Affiliation:
Institut Méditerranéen d'Ecologie et de Paléoécologie UMR 6116 du CNRS — Europôle Méditerranéen de l'Arbois — Pavillon Villemin — BP 80, 13545 Aix-en-Provence Cedex 04, France
Philippe Ponel
Affiliation:
Institut Méditerranéen d'Ecologie et de Paléoécologie UMR 6116 du CNRS — Europôle Méditerranéen de l'Arbois — Pavillon Villemin — BP 80, 13545 Aix-en-Provence Cedex 04, France
Abdolhossein Amini
Affiliation:
School of Geology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
Hossein Akhani
Affiliation:
Department of Botany, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
Suzanne A.G. Leroy
Affiliation:
Department of Geography and Earth Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
Lora Stevens
Affiliation:
Department of Geological Sciences, California State University, Long Beach, CA 90840-3902, USA
Hamid Lahijani
Affiliation:
Iranian National Center for Oceanography (INCO), No.9 Etemad Zadeh Street, West Fatemi Ave., 14155-4781 Tehran, Iran
Simon Brewer
Affiliation:
Institut d'Astrophysique et de Géophysique, Université de Liège, Bat. B5C, 17 Allée du Six Août, B-4000, Liège, Belgium
*
*Corresponding author.E-mail address:[email protected] (M. Djamali).

Abstract

A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe ofArtemisiaand Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. WhileJuniperusand deciduousQuercustrees were extremely rare and restricted to some refugia,Hippophaë rhamnoidesconstituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion inEphedrashrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured anArtemisiasteppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession ofHippophaë, Ephedra, Betula, Pistaciaand finallyJuniperusandQuercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhani, H., Salimian, M., (2003). An extant disjunct stand of Pterocarya fraxinifolia (Juglandaceae) in Central Zagros (Iran). Willdenowia 33, 113120.Google Scholar
Alipour, S., in press. Hydrogeochemistry of seasonal variation of Urmia Salt Lake, Iran. Saline systems 2. doi:10.1186/1746-1448-2-9.Google Scholar
Asri, Y., Ghorbanli, M., (1997). The halophilous vegetation of the Orumieh Lake salt marshes, NW Iran. Plant Ecology 132, 155170.CrossRefGoogle Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., Reches, Z., (2002). Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea. Quaternary Research 57, 921.CrossRefGoogle Scholar
Berberian, M., Arshadi, S., (1975). On the evidence of the youngest activity of the North Tabriz Fault and seismicity of Tabriz City. Geological Survey of Iran, Internal Report 39, 397414.Google Scholar
Bottema, S., (1986). A late Quaternary pollen diagram from Lake Urmia (northwestern Iran). Review of Palaeobotany and Palynology 47, 241261.Google Scholar
Bottema, S., Woldring, H., (1984). Late Quaternary vegetation and climate of southwestern Turkey, Part II. Palaeohistoria 26, 123149.Google Scholar
Browicz, K., Chrology of trees and shrubs in South-West Asia and adjacent region vol. 1, Polish Scientific Publishers, Poznań., .Google Scholar
Budnar-Tregubov, A., (1972). Les reliques de la flore tertiaire en Iran. Etude sur le quaternaire dans le monde, 8e congrès de l'Union international pour l'étude du quaternaire (INQUA 1969) 317321.,Paris.Google Scholar
Cheddadi, R., Mamakova, K., Guiot, J., de Beaulieu, J.-L., Reille, M., Andrieu, V., Granoszewski, W., Peyron, O., (1998). Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 7385.Google Scholar
de Beaulieu, J.-L., Reille, M., (1984). A long Upper Pleistocene pollen record from Les Echets near Lyon, France. Boreas 13, 111132.CrossRefGoogle Scholar
de Beaulieu, J.-L., Reille, M., (1992). The last climatic cycle at Grande Pile (Voges, France). Quaternary Science Reviews 11, 431438.Google Scholar
de Beaulieu, J.-L., Andrieu, V., Reille, M., Grüger, E., Tzedakis, P.C., Svobodova, H., (2001). An attempt at correlation between the Velay pollen sequence and the Middle Pleistocene stratigraphy from central Europe. Quaternary Science Reviews 20, 15931602.Google Scholar
Djamali, M., (2004). La relation pluie-pollinique/végétation sur un transect forêt-steppe, dans le Parc National du Golestan, NE de l'Iran. Diplôme d'Etudes Approfondies Université Paul Cézanne, Marseille., 42 pp.Google Scholar
Eimanifar, A., Mohebbi, F., in press. Urmia Lake (Northwest Iran): a brief review. Saline systems 3. doi:10.1186/1746-1448-3-5.Google Scholar
Follieri, M., Magri, D., Sadori, L., (1988). 250,000-year pollen record from Valle di Castiglone (Roma). Pollen et Spores 30, 329356.Google Scholar
Grimm, E.C., (2004/2005). TILIA and TGView software, Version 2.0.2. Illinois, Illinois State University., .Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.-L., (1989). A 140,000-year continental climate reconstruction from two European pollen records. Nature 338, 309313.Google Scholar
Guiot, J., de Beaulieu, J.-L., Cheddadi, R., David, F., Ponel, P., Reille, M., (1993). The climate in Western Europe during the last glacial/interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 7393.Google Scholar
Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., Turnball, J., (2005). 14C activity and global carbon cycle changes over the past 50,000 years. Science 303, 202207.Google Scholar
Kelts, K., Shahrabi, M., (1986). Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 54, 105130.CrossRefGoogle Scholar
Klotz, S., Guiot, J., Mosbrugger, V., (2003). Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global and Planetary Change 36, 277294.CrossRefGoogle Scholar
Klotz, S., Müller, U., Mosbrugger, V., de Beaulieu, J.L., Reille, M., (2004). Eemian to early Würmian climate dynamics: history and pattern of changes in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 107126.CrossRefGoogle Scholar
Kolstrup, E., (1980). Climate and stratigraphy in northwestern Europe between 30,000 B.P. and 13,000 B.P., with special reference to the Netherlands. Mededelingen Rijk Geologische Dienst 32, 181253.Google Scholar
Kuhle, M., (2004). The high Glacial (pre-LGM and LGM) glaciation of SE-Iranian mountains exemplified by Kuh-i-Jupar massif in the Zagros, Part II. Territory 1 3, 115.Google Scholar
Kvavadze, E.V., Conner, S.E., (2005). Zelkova carpinifolia (Pallas) K. Koch in Holocene sediments of Georgia—an indicator of climatic optima. Review of Palaeobotany and Palynology 133, 6989.Google Scholar
Leroy, S., Roiron, P., (1996). Final Pliocene macro and micro floras of the paleovalley of Bernasso (Escandorgue, France). Review of Palaeobotany and Palynology 94, 295328.Google Scholar
Leroy, S.A.G., Marret, F., Giralt, S., Bulatov, S.A., (2006). Natural and anthropogenic rapid changes in the Kara-Bogaz Gol over the last two centuries by palynological analyses. Quaternary International 150, 5270.CrossRefGoogle Scholar
Leroy, S., Marret, F., Gibert, E., Chalié, F., Reyss, J.-L., Arpe, K., (2007). River inflow and salinity changes in the Caspian Sea during the last 5500 years. Quaternary Science Reviews 26, 33593383.Google Scholar
Low, J.J., Walker, M.J.C., (1997). Reconstructing Quaternary environments. 2nd ed London, Longman., .Google Scholar
Magri, D., Tzedakis, P.C., (2000). Orbital signatures and long-term vegetation patterns in the Mediterranean. Quaternary International 73/74, 6978.Google Scholar
Marret, F., Leroy, S., Chalié, F., Gasse, F., (2004). New organic-walled dinoflagellate cysts from recent sediments of central Asian seas. Review of Palaeobotany and Palynology 129, 120.Google Scholar
Marret, F., Mudie, P., Aksu, A., Hiscott, R.N., (2007). A Holocene dinocyst record of a two-step transformation of the Neoeuxinian brackish water lake into the Black Sea. Quaternary International .Google Scholar
Meusel, H., Jäger, E., Rauschert, S., Weinert, E., (1978). Vergleichende Chorologie der zentraleuropäischen Flora, Band II. Fischer. Jena.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis. 2nd ed. Oxford, Blackwell Scientific Publications., .Google Scholar
R. Developemnt Core Team (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 3-900051-07-0 http://www.R-project.org.Google Scholar
Reichart, G.J., Dulk, M., den Visser, H.J., Weijden, C.H., van der Zachariasse, W.J., (1997). A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Muttay Ridge (northern Arabian Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 134, 149169.CrossRefGoogle Scholar
Reille, M., (1992). Pollen et spores d'Europe et d'Afrique du Nord, Laboratoire de botanique historique et de palynologie, Marseille. 520 pp.Google Scholar
Reille, M., (1995). Pollen et spores d'Europe et d'Afrique du Nord, Supplément 1, Laboratoire de botanique historique et de palynologie, Marseille. 327 pp.Google Scholar
Reille, M., (1998). Pollen et spores d'Europe et d'Afrique du Nord, Supplément 2, Laboratoire de botanique historique et de palynologie, Marseille. 536 pp.Google Scholar
Rivas-Martinez, S., Sánchez-Mata, D., Costa, M., (1999). Boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobotanica 12, 3311.Google Scholar
Roberts, N., (1983). Age, palaeoenvironments, and climatic significance of late Pleistocene Konya lake, Turkey. Quaternary Research 19, 154171.Google Scholar
Shah-Hosseini, M., (2003). Sedimentology of the Lake Urmia bottom sediments in the middle part of Shahid Kalantari Highway with a special reference to the source of sediments. Unpublished MSc thesis, University of Tehran, , Tehran., .Google Scholar
Sharifi, A., (2002). Factors Controlling the Sedimentological and Geochemical Characteristics of the Lake Urmia. Iranian National Centre for Oceanography, Internal Report (in Persian), Tehran. 131 pp.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 10411084.Google Scholar
Tzedakis, P.C., (1993). Long-term tree populations in northwest Greece through multiple Quaternary climatic cycles. Nature 364, 437440.CrossRefGoogle Scholar
Tzedakis, P.C., (1994). Vegetation change through glacial–interglacial cycles: a long pollen sequence perspective. Philosophical Transactions of Royal Society of London B 345, 403432.Google Scholar
Tzedakis, P.C., (1999). The last climatic cycle at Kopais, central Greece. Journal of the Geological Society of London 156, 425434.CrossRefGoogle Scholar
Tzedakis, P.C., (2005). Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability. Quaternary Science Reviews 24, 15851599.CrossRefGoogle Scholar
Tzedakis, P.C., Andrieu-Ponel, V., de Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., Wijmstra, T.A., (1997). Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150, 171176.Google Scholar
van der Wiel, A.M., Wijmstra, T.A., (1987a). Palynology of the middle part (78–120) of the core Tenaghi Philippon II, Middle Pleistocene of Macedonia, Greece. Review of Palaeobotany and Palynology 52, 7388.Google Scholar
van der Wiel, A.M., Wijmstra, T.A., (1987b). Palynology of the 112.8–197.8 m interval of the core Tenaghi Philippon III, Middle Pleistocene of Macedonia, Greece. Review of Palaeobotany and Palynology 52, 89117.Google Scholar
Van Zeist, W., (1967). Late Quaternary vegetation history of western Iran. alaeobotany and Palynology 2, 301311.Google Scholar
van Zeist, W., Bottema, S., (1977). Palynological investigations in western Iran. Palaeohistoria 19, 1985.Google Scholar
Wick, L., Lemke, G., Sturm, M., (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, 665675.CrossRefGoogle Scholar
Wijmstra, T.A., (1969). Palynology of the first 30 metres of a 120 m deep section in Northern Greece. Acta Botanica Neerlandica 18, 511527.Google Scholar
Wijmstra, T.A., Smit, A., (1976). Palynology of the middle part (30–78 metres) of the 120 m deep section in northern Greece (Macedonia). Acta Botanica Neerlandica 25, 297312.Google Scholar
Woillard, G., (1978). Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9, 121.Google Scholar
Woldring, H., Bottema, S., (2003). The vegetation history of east-central Anatolia in relation to archaeology: the Eski Acigöl pollen evidence compared with the near eastern environment. Palaeohistoria 43–44, 134.Google Scholar
Wright, H.E., (1961). Pleistocene glaciation in Kurdistan. Eiszeitalter und Gegenwart 12, 131164.Google Scholar
Zehzad, B., (1989). Flora and vegetation of Ashk Island (Urumia Lake National Park). Journal of Science, University of Tehran 18, 5764.Google Scholar