Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T00:58:25.208Z Has data issue: false hasContentIssue false

Late Holocene Phytolith and Carbon-Isotope Record from a Latosol at Salitre, South-Central Brazil

Published online by Cambridge University Press:  20 January 2017

Anne Alexandre
Affiliation:
CEREGE, Université d'Aix-Marseille III, University of Windsor, Europôle Mediterranéen de l'Arbois, B.P. 80, 13545, Aix en Provence Cedex 4, France
Jean-Dominique Meunier
Affiliation:
CEREGE, Université d'Aix-Marseille III, University of Windsor, Europôle Mediterranéen de l'Arbois, B.P. 80, 13545, Aix en Provence Cedex 4, France
Andre Mariotti
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université P. & M. Curie, Case 120, 4 place Jussieu, 75252, Paris cedex 05, France
Francois Soubies
Affiliation:
ORSTOM, Département TOA, UR 12, Géosciences de l'Environnement Tropical, Laboratoire de Minéralogie, UPS, 39, Allée Jules Guesde, 31000, Toulouse, France

Abstract

The reliability of paleovegetation records inferred from soil phytolith assemblages and SOM (soil organic matter) carbon isotope analysis was examined in light of previous pollen and charcoal reconstructions. The sampled latosol is located in south-central Brazil (Salitre), at a boundary between forest and cerrado. The derived mean age of phytoliths and SOM at each level is the result of a balance between continuous translocation and selective dissolution. It increases with depth in a regular, quantifiable fashion that allows paleoenvironmental interpretation. Phytoliths and SOM tracers first record a savanna phase, associated with the last Holocene long dry period occurring between ca. 5500 and 4500 yr B.P. Two periods of tree community development followed, between ca. 4000 and 3000 and after ca. 970 yr. B.P., leading to the present cerrado/forest association. The dry spell interrupted this trend about 970 ± 60 yr B.P. The second development of woody elements was contemporaneous with an increase in anthropogenic fires. Therefore, climate was more important than fires and human activities in constraining the growth of vegetation during the last nine centuries at Salitre. More generally, despite pedogenic processes, soil phytoliths and δ13C values of the SOM may be accurate tracers of vegetation changes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., Southon, J., (1997). Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, 7080.CrossRefGoogle Scholar
Absy, M.L., CLeef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira Da Silva, M., Soubies, F., Suguio, K., Turcq, B., Van Der Hammen, T., (1991). Occurrence of four episodes of rain forest regression in southeastern Amazonia during the last 60,000 yrs. First comparison with other tropical regions. Compte Rendus de l'Academie des Sciences de Paris 312, 673678.Google Scholar
Alexandre, A., Meunier, J.-D., Colin, F., Koud, J.-M., (1997). Plant impact on the biogeochemical cycle of silicon and related weathering problems. Geochimica et Cosmochimica Acta 61, 677682.CrossRefGoogle Scholar
Alexandre, A., Meunier, J.-D., Lézine, A.-M., Vincens, A., Schwartz, D., (1997). Grassland dynamics in intertropical Africa during the late Holocene: A phytolith analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 213229.CrossRefGoogle Scholar
Balesdent, J., Guillet, B., (1982). Les datations par le14 . Sciences du sol 2, 93112.Google Scholar
Bartoli, F., Wilding, L.P., (1980). Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Science Society of America Journal 44, 873878.CrossRefGoogle Scholar
Boulet, R., Pessenda, L.C.R., Telles, E.C.C., Melfi, A.J., (1995). Une évaluation de la vitesse de l'accumulation superficielle de matière par la faune du sol à partie de la datation des charbons et de l'humine du sol. Exemple des latosols des versants du lac Campestre, Salitre, Minas Gerais, Brésil. Compte Rendus de l'Academie des Sciences de Paris 320, 287294.Google Scholar
Boutton, T.W., (1996). Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Mass Spectrometry of Soils Dekker, New York.p. 47–82.Google Scholar
Bradbury, J.P., Leyden, B., Salgado-Labouriau, M., Lewis, W.M., Schubert, C. Jr., Binford, M.W., Frey, D.G., Whitehead, D.R., Weibezahn, F.H., (1981). Late Quarternary environmental history of Lake Valencia, Venezuela. Science 214, 12991305.CrossRefGoogle Scholar
Brown, D., (1986). Prospects and limits of a phytolith key for grasses in the Central United State. Journal of Archaeological Science 11, 221243.Google Scholar
Cahen, D., Moeyersons, J., (1977). Subsurface movements of stone artefacts and their implications for the prehistory of Central Africa. Nature 266, 812815.CrossRefGoogle Scholar
Colin, F., Brimhall, G.H., Nahon, D., Lewis, C.J., Baronnet, A., Danty, K., (1992). Equatorial rainforest lateritic mantles: A geomembrane filter. Geology 20, 523526.2.3.CO;2>CrossRefGoogle Scholar
Da Silva, S.T., Labouriau, L.G., (1970). Corpos silicosos de Gramineas dos Cerrados. III. Pesquisa Agropecuaria Brasileira 5, 167182.Google Scholar
De Campos, A.C., Labouriau, L.G., (1969). Corpos silicosos de Gramineas dos Cerrados. II. Pesquisa Agropecuaria Brasileira. 4, 143151.Google Scholar
Desjardins, T., Carneiro-Filho, A., Mariotti, A., Chauvel, A., Girardin, C., (1996). Changes of the forest–savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108, 749756.CrossRefGoogle ScholarPubMed
Desjardins, T., Volkoff, B., Andreux, F., Cerri, C.C., (1991). Distribution du carbone total et de l'isotope13 . Science du Sol 29, 175187.Google Scholar
Fredlund, G.G., Tieszen, L.L., (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21, 321335.CrossRefGoogle Scholar
Fredlund, G.G., Tieszen, L.L., (1997). Phytolith and carbon isotope evidence for late quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quaternary Research 47, 206217.CrossRefGoogle Scholar
Fredlund, G.G., Tieszen, L.L., (1997). Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 199211.CrossRefGoogle Scholar
Friedli, H., Lotscher, H., Oeschge, H., Siegenthaler, U., Stauffer, B., (1986). Ice core record of the13 12 2 . Nature 324, 237238.CrossRefGoogle Scholar
Gasse, F., Van Campo, E., (1994). Earth and Planetary Science Letters. 126, 435456.Google Scholar
Girardin, C., Mariotti, A., (1991). Analyse isotopique du13 . Cahier Orstom, Serie Pédologie XXVI 4, 371380.Google Scholar
Goh, M., Stout, J.D., Rafter, T.A., (1977). Radiocarbon enrichment of soil organic matter fractions in New Zealand soils. Soil Science 123, 385391.CrossRefGoogle Scholar
Jenkinson, D.S., Rayner, J.H., (1977). The turnover of soil organic matter in some of the Rothamsdet classical Experiments. Soil Science 123, 298305.CrossRefGoogle Scholar
Johnson, D.L., (1990). Biomantle evolution and the redistribution of earth materials and artifacts. Soil Science 149, 84102.CrossRefGoogle Scholar
Kelly, E. F., (1990). Method for Extracting Opal Phytoliths from Soil and Plant Material.Google Scholar
Kelly, E.F., Amundson, R.G., Marino, B.D., Deniro, M.J., (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research 35, 222233.CrossRefGoogle Scholar
Kurmann, M.H., (1985). An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology 49, 217235.CrossRefGoogle Scholar
Ledru, M.-P., (1993). Late quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39, 9098.CrossRefGoogle Scholar
Ledru, M.-P., Behling, H., Fournier, M., Martin, L., Servant, M., (1994). Localisation de la forêt d'Araucaria du Brésil au cours de l'Holocène. Implications paléoclimatiques. Compte-Rendus de l'Academie des Sciences de Paris 317, 521617.Google Scholar
Ledru, M.-P., Soares Braga, P.I., Soubies, F., Fournier, M., Martin, L., Suguio, K., Turcq, B., (1996). The last 50,000 years in the Neotropics (Southern Brazil): Evolution of vegetation and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 13, 239257.CrossRefGoogle Scholar
Marino, B.D., McElroy, M.B., (1991). Isotopic composition of atmospheric CO2 . Nature 349, 127131.CrossRefGoogle Scholar
Mariotti, A., (1991). Le carbone-13 en abondance naturelle, traceur de la dynamique de la matière organique des sols et de l'évolution des paléoenvironnements continentaux. Cahiers Orstom, Serie Pedologie XXVI, 299313.Google Scholar
Mariotti, A., Peterschmitt, E., (1994). Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter. Oecologia 97, 475480.CrossRefGoogle ScholarPubMed
Martin, A., Mariotti, A., Balesdent, J., Lavelle, P., Vuattoux, R., (1990). Estimate of organic matter turnover rate in a savanna soil by13 . Soil Biology Biochemistry 22, 517523.CrossRefGoogle Scholar
Mulholland, S.C., (1989). Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. Journal of Archaeological Science 16, 489511.CrossRefGoogle Scholar
Nadelhoffer, K.J., Fry, B., (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52, 16331640.CrossRefGoogle Scholar
O'Brien, B.J., Stout, J.D., (1978). Movment and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology Biochemistry 10, 309317.CrossRefGoogle Scholar
Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51, 11731179.CrossRefGoogle Scholar
Piperno, D.R., (1988). Phytolith Analysis: An Archaeological and Geological Perpective. Academic Press, San Diego.Google Scholar
Piperno, D.R., Becker, P., (1996). Vegetational history of a site in the central Amazon basin derived from phytolith and charcoal records from natural soils. Quaternary Research 45, 202209.CrossRefGoogle Scholar
Salgado-Labouriau, M.L., Casseti, V., Ferraz-Vicentini, K.R., Martin, L., Soubies, F., Suguio, K., Turcq, B., (1997). Late Quaternary vegetational and climatic changes in cerrado and palm swamp from Central Brazil. Paleogeography, Palaeoclimatology, Palaeoecology 128, 215226.CrossRefGoogle Scholar
Sendulsky, T., Labouriau, L.G., (1966). Corpos silicosos de Gramineas dos Cerrados. I. Anais de Academia Brasileira de Ciencas 38, 159196.Google Scholar
Servant, M., Maley, J., Turcq, B., Absy, M.-L., Brenac, P., Fournier, M., Ledru, M.-P., (1993). Tropical forest changes during the late Quaternary in African and South American lowlands. Global and Planetary Change 7, 2540.CrossRefGoogle Scholar
Söndahl, M.R.-I., Labouriau, L.G., (1970). Corpos silicosos de Gramineas dos Cerrados. IV. Pesquisa Agropecuaria Brasileira 5, 183207.Google Scholar
Soubiès, F., (1980). Existence d'une phase sèche en Amazonie brésilienne datee par la presence de charbons dans les sols (6000–3000 ans BP). Caiers ORSTOM, Serie Geoologie 11, 133148.Google Scholar
Stine, S., (1994). Extreme and persistent drought in California and Patagonia during medieval time. Nature 369, 546549.CrossRefGoogle Scholar
Twiss, P.C., (1969). Morphological classification of grass phytoliths. Soil Science Society of America Proceeding 33, 109115.CrossRefGoogle Scholar
Twiss, C., (1992). Predicted world distribution of C3 and C4 grass phytoliths. Rapp, G., Mulholland, S.C. Phytolith Systematics Plenum, New York.CrossRefGoogle Scholar
Vernet, J.-L., Wengler, L., Solari, M.-E., Ceccantini, G., Fournier, M., Ledru, M.-P., Soubies, F., (1994). Feux, climats et végétations au Brésil central durant l'Holocène: Les données d'un profil de sol à charbons de bois (Salitre, Minas Gerais). Compte-Rendus de l'Academie des Sciences de Paris 319, 13911397.Google Scholar