Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T17:33:08.415Z Has data issue: false hasContentIssue false

Isolation and water-level fluctuations of Lake Kachishayoot, Northern Québec, Canada

Published online by Cambridge University Press:  20 January 2017

Luc Miousse
Affiliation:
Centre d'études nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Najat Bhiry*
Affiliation:
Centre d'études nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Martin Lavoie
Affiliation:
Centre d'études nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
*
*Corresponding author. Email Address:[email protected]

Abstract

This study combines different methods, including grain size, macrofossil, and pollen analyses, to reconstruct paleogeographical and paleoclimatological conditions for periods before, during, and after the isolation of a small lake (Lake Kachishayoot) in northern Québec. After the retreat of the Laurentide Ice Sheet around 8000 14C yr B.P., the area was submerged by the Tyrrell Sea. The transition from marine to lacustrine environment occurred about 5400 yr B.P. Two major periods of water-level fluctuations were inferred from organic and mineral sediments: a high water level that occurred after 3200 yr B.P. and a low water level that started before 2200 yr B.P. Our chronological data for the first period are consistent with those from nearby Lac des Pluviers and from other lakes in east central Canada and in the northeastern United States. During the low-water-level period, however, there is no evidence for minor fluctuations, whereas other lakes in northern Québec and east-central Canada underwent several brief lowerings. Long-term changes in atmospheric circulation caused by changing global boundary conditions likely explained long-term water-level fluctuations of Lake Kachishayoot.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, M., and Tremblay, G., (1983). La dynamique littorale des îles Manitounuk durant l'Holocéne. Zeitschrift für Geomorphologie 47, 61 95.Google Scholar
Almquist-Jacobson, H., Dieffenbacher-Krall, A.C., Flanagan-Brown, R., and Sanger, D., (2001). The Holocene record of lake levels of Mansell Pond, central Maine, USA. The Holocene 11, 189 201.CrossRefGoogle Scholar
Bégin, Y., (2001). Tree-ring dating of extreme lake levels at subarctic–boreal interface. Quaternary Research 55, 133 139.CrossRefGoogle Scholar
Bégin, Y., and Payette, S., (1988). Dendroecological evidence of lake-level changes during the last three centuries in subarctic Québec. Quaternary Research 30, 210 220.CrossRefGoogle Scholar
Benninghoff, W.S., (1962). Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4, 332 333.Google Scholar
Bhiry, N., and Filion, L., (1996). Holocene plant succession in a dune–swale environment of southern Québec. A macrofossil analysis. Écoscience 3, 330 342.CrossRefGoogle Scholar
Bhiry, N., and Filion, L., (2001). Analyse des macrorestes végétaux. Payette, S., and Rochefort, L. Ecologie des tourbières du Québec-Labrador. Presses de l'Université Laval, Sainte-Foy. 259 273.Google Scholar
Burne, R.V., Bauld, J., and De Deckker, P., (1980). Saline lake charophytes and their geological significance. Journal of Sedimentary Petrology 50, 281 293.Google Scholar
Campbell, C., (1998). Late Holocene lake sedimentology and climate change in southern Alberta, Canada. Quaternary Research 49, 96 101.CrossRefGoogle Scholar
Canada The Canadian Soil Classification System. Commission canadienne de pédologie. (1978). Department of Supply and Services Canada, Ottawa.Google Scholar
Cayer, D., (2002). Histoire post-marine et holocéne d'un lac subarctique. sédimentologie, minéralogie et géochimie isotopique. M.Sc. thesis, Université Laval, Sainte-Foy.Google Scholar
COHMAP Members Climate changes of the last 18,000 years. Observations and model simulations. Science 241, (1988). 1043 1052.Google Scholar
Comtois, P., and Payette, S., (1984). Représentation pollinique actuelle et subactuelle des peupliéraies boréales au Nouveau-Québec. Géographie physique et Quaternaire 38, 123 133.Google Scholar
Crum, H.A., Anderson, L.E., (1979). (1980). Mosses of Eastern North America. Columbia University Press, New York.Google Scholar
Dalrymple, R.W., and Carey, J.S., (1990). Water-level fluctuations in Lake Ontario over the last 4000 years as recorded in the Cataraqui River lagoon, Kingston, Ontario. Canadian Journal of Earth Sciences 27, 1330 1338.CrossRefGoogle Scholar
Dinel, H., Richard, P.J.H., L vesque, P.E.M., and Larouche, A., (1986). Origine et volution du marais tourbeux de Keswick, Ontario, par l analyse pollinique et macrofossile. Canadian Journal of Earth Sciences 23, 1145 1155.Google Scholar
Dyke, A.S., and Prest, V.K., (1987). Late Wisconsinian and Holocene history of the Laurentide Ice Sheet. Géographie physique et Quaternaire 41, 237 263.Google Scholar
Environmental Canada Canadian Climate Normals, 1961–1990. (1993). Atmospheric Environment Service, Ottawa.Google Scholar
Faegri, K., and Iversen, J., (1989). Textbook of Pollen Analysis, fourth ed., revised by K. Faegri, P.E. Kaland, and K. Krzywinski. Wiley, Chichester.Google Scholar
Filion, L., (1984). A relationship between dunes, fire and climate recorded in the Holocene deposits of Qu bec. Nature 309, 543 546.Google Scholar
Flint, J.E., Dalrymple, R.W., and Flint, J.J., (1988). Stratigraphy of the Sixteen Mile Creek lagoon, and its implications for Lake Ontario water levels. Canadian Journal of Earth Sciences 25, 1175 1183.Google Scholar
Gajewski, K., (1991). Représentation pollinique actuelle—la limite des arbres au Nouveau-Québec. Canadian Journal of Earth Sciences 28, 643 648.Google Scholar
Gibson, J.A.E., Vincent, W.F., and Pienitz, R., (2001). Hydrologic control and diurnal photobleaching of CDOM in a subarctic lake. Archiv für Hydrobiologie 152, 143 159.Google Scholar
Grimm, E.C., (1991). TILIA and TILIA-GRAPH. Illinois State Museum, Springfield, IL.Google Scholar
Harrison, S.P., (1989). Lake levels and climatic change in North America. Climate Dynamics 3, 157 167.CrossRefGoogle Scholar
Harrison, S.P., and Digerfeldt, G., (1993). European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews 12, 233 248.Google Scholar
Harrison, S.P., and Metcalfe, S.E., (1985). Variations in lake level during the Holocene in North America. an indicator of changes in atmospheric circulation pattern. Géographie physique et Quaternaire 39, 141 150.Google Scholar
Ireland, R.R., (1982). Moss Flora of the Maritime Provinces. National Museums of Canada, Museum of Natural Sciences, Ottawa.Google Scholar
King, G.A., (1993). Vegetation and pollen relationships in eastern Canada. Canadian Journal of Botany 71, 193 210.Google Scholar
Lavoie, M., and Richard, P.J.H., (2000). Postglacial water-level changes of a small lake in southern Qu bec, Canada. The Holocene 10, 621 634.Google Scholar
Lizotte, A., (2002). Reconstitution des fluctuations holocènes du plan d'eau d'un lac subarctique, Kuujjuarapik. B.Sc. thesis, Universit Laval, Sainte-Foy.Google Scholar
Marie-Victorin, F., (1995). Flore laurentienne. Presses de l'Université de Montréal, Montréal.Google Scholar
Martin, A.C., (1961). Seed Identification Manual. University of California Press, Berkeley.Google Scholar
McAndrews, J.H., Berti, A.A., and Norris, G., (1973). Key to the Quaternary Pollen and Spores of the Great Lakes Region. Life Science Miscellaneous Publication. Royal Ontario Museum, Toronto.Google Scholar
McCarthy, F.G., and McAndrews, J.H., (1988). Water levels in Lake Ontario 4230–2000 years B.P.. evidence from Grenadier Pond, Toronto, Canada. Journal of Paleolimnology 1, 99 113.Google Scholar
McManus, J., (1988). Grain size determination and interpretation. Tucker, M. Techniques in Sedimentology. Blackwell Scientific, Oxford. 63 85.Google Scholar
Miousse, L., (2001). “Reconstitution des fluctuations holocènes du plan d'eau du lac Kachishayoot, Whapmagoostui-Kuujjuarapik, Qúbec”. M.Sc. thesis, Universit Laval, Sainte-Foy.Google Scholar
Montgomery, F.H., (1977). Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E., (1991). Pollen Analysis. Blackwell Scientific, Oxford.Google Scholar
Mott, R.J., (1978). Populus in late-Pleistocene pollen spectra. Canadian Journal of Botany 56, 1021 1031.Google Scholar
Newby, P.E., Killoran, P., Waldorf, M.R., Shuman, B.N., Webb, R.S., Webb, T. III 14,000 years of sediment, vegetation, and water-level changes at the Makepeace cedar swamp, southeastern Massachusetts. Quaternary Research 53, (2000). 352 368.Google Scholar
Payette, S., and Delwaide, A., (1991). Variations séculaires du niveau d'eau dans le bassin de la rivière Boniface (Québec nordique). une analyse dendroécologique. Géographie physique et Quaternaire 45, 59 67.Google Scholar
Payette, S., and Filion, L., (1993). Holocene water-level fluctuations of a subarctic lake at the tree line in northern Québec. Boreas 22, 7 14.Google Scholar
Richard, P.J.H., (1970). Atlas pollinique des arbres et de quelques arbustes indigènes du Québec. Naturaliste canadien 97, 1 34. 97161., 241306.Google Scholar
Saulnier-Talbot, E., (2000). Succession lacustre et variations limnologiques holocènes du Lac Kachishayoot, Québec nordique, inférées par les assemblages fossiles de diatomee. M.Sc. thesis, Universit Laval, Sainte-Foy.Google Scholar
Saulnier-Talbot, E., and Pienitz, R., (2001). Isolation au postglaciaire d'un bassin c tier près de Kuujjuaraapik-Whapmagoostui, Hudsonie (Québec). une analyse biostratigraphique diatomifère. Géographie physique et Quaternaire 55, 63 74.Google Scholar
Shuman, B., Bravo, J., Kaye, J., Lynch, J.A., Newby, P., Webb, T. III. Late Quaternary water-level variations and vegetation history at Crooked Pond, southeastern Massachusetts. Quaternary Research 56, (2001). 401 410.Google Scholar
Stewart, H.B. Jr Sedimentary reflections on depositional environments in San Miguel Lagoon, Baja California, Mexico. Bulletin of American Association of Petrology and Geology 42, (1958). 2567 2618.Google Scholar
Stuiver, M., and Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215 230.Google Scholar
Vance, R.E., Last, W.M., and Smith, J.A., (1997). Hydrologic and climatic implications of multidisciplinary study of late Holocene sediment from Kenosee Lake, southeastern Saskatchewan, Canada. Journal of Paleolimnology 18, 365 393.Google Scholar
Webb, T. III, Bartlein, P.J., Harrison, S.P., and Anderson, K.H., (1993). Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. Wright, H.E. Jr., Kutzbach, J.E., Street-Perrott, F.A., Ruddiman, W.F., Webb, T. III Global Paleoclimates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis. 415 467.Google Scholar
Yu, G., and Harrison, S.P., (1995). Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas 24, 260 268.Google Scholar
Yu, Z., and McAndrews, J.H., (1994). Holocene water levels at Rice Lake, Ontario, Canada. sediment, pollen and plant-macrofossil evidence. The Holocene 4, 141 152.Google Scholar
Yu, Z., McAndrews, J.H., and Eicher, U., (1997). Middle Holocene dry climate caused by change in atmospheric circulation patterns. evidence from lake levels and stable isotopes. Geology 25, 251 254.Google Scholar
Yu, Z., McAndrews, J.H., and Siddiqi, D., (1996). Influences of Holocene climate and water levels on vegetation dynamics of lakeside wetland. Canadian Journal of Botany 74, 1602 1615.Google Scholar