Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:56:36.225Z Has data issue: false hasContentIssue false

Insights on the opening of the Galerian mammal migration pathway from magnetostratigraphy of the Pleistocene marine-continental transition in the Arda River section (northern Italy)

Published online by Cambridge University Press:  20 January 2017

Edoardo Monesi*
Affiliation:
Dipartimento di Scienze della Terra, Universitàa di Milano, via Mangiagalli 34, I-20133, Milano, Italy
Giovanni Muttoni
Affiliation:
Dipartimento di Scienze della Terra, Universitàa di Milano, via Mangiagalli 34, I-20133, Milano, Italy
Giancarlo Scardia
Affiliation:
Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
Fabrizio Felletti
Affiliation:
Dipartimento di Scienze della Terra, Universitàa di Milano, via Mangiagalli 34, I-20133, Milano, Italy
Fabio Bona
Affiliation:
Dipartimento di Scienze della Terra, Universitàa di Milano, via Mangiagalli 34, I-20133, Milano, Italy Museo Geologico “G. Cortesi”, via Sforza Caolzio 57, 29014, Castell’Arquato, Italy
Benedetto Sala
Affiliation:
Museo di Paleontologia e Preistoria, Università degli Studi di Ferrara, Corso Ercole I d’Este 32, 44121, Ferrara, Italy
Fabrizio Tremolada
Affiliation:
RPS Energy, Goldsworth House, Denton Way, Goldsworth Park, GU213LG, Woking, UK
Carlo Francou
Affiliation:
Museo Geologico “G. Cortesi”, via Sforza Caolzio 57, 29014, Castell’Arquato, Italy
Gianluca Raineri
Affiliation:
Ente di Gestione dei Parchi dell’Emilia Occidentale, Piazza G Ferrari 5, 43013, Langhiano, Italy
*
*Corresponding author. E-mail address:[email protected](E. Monesi)

Abstract

We investigated the magnetostratigraphy of the Arda River section (northern Italy) where the transition from marine to continental sedimentation occurring in the Po River basin during the Pleistocene is registered. Four magnetic polarity reversals were used to construct an age model of sedimentation aided by marine biostratigraphy and tied to a standard δ18O curve from the literature. The section spans from the Olduvai subchron (1.94-1.78 Ma) across the Jaramillo subchron (1.07-0.99 Ma) up to the Brunhes—Matuyama boundary (0.78 Ma). The onset of continental deposition occurred during marine isotope stage (MIS) 30 at ∼1.04 Ma. An association of Villafranchian and Early Galerian mammals, including Sus strozzii and Ursus dolinensis, has been found in the continental sediments dated to MIS 29-27 (∼0.99 Ma). Above follows a prominent fluvial conglomerate attributed to the first major low stand of the Pleistocene culminating with MIS 22 at ∼0.9 Ma during the late Early Pleistocene climate turnover (EPT). These and other data from the literature are used to reconstruct the onset of continental deposition in the greater Po basin and shed light on the opening of the migration pathway that brought far-traveled Galerian mammal immigrants to enter Europe for the first time during the EPT.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzaroli, A., 1954. Filogenesi e biologia di Sus strozii e Sus minor (Revisione della fauna dei terreni fluvio-lacustri del Valdarno superiore, V). Paleontographia Italica 48 (18), 4176.Google Scholar
Azzaroli, A., Mazza, P., 1992. The cervid genus Eucladoceros in the early Pleistocene of Tuscany. Palaeontographia Italica 79, 43100.Google Scholar
Berger, W.H., Blickert, T., Schmidt, H., Wefer, G., 1993. Quaternary oxygen isotope record of pelagic foraminifers: site 806, Ontong Java Plateau. Proceedings ODP: Scientific Results 130, 381395.Google Scholar
Bona, F., Sala, B., 2016. Villafranchian-Galerian mammal faunas transition in South-Western Europe. The case of the late early Pleistocene mammal fauna of the Frantoio locality, Arda River (Castell’Arquato, Piacenza, Northern Italy). Geobios. http://dx.doi.org/10.1016/j.geobios.2016.06.002.CrossRefGoogle Scholar
Calabrese, L., Di Dio, G., Cibin, U., De Nardo, M.T., Di Giulio, A., Martelli, L., Martini, A., Pizziolo, M., Rogledi, S., Roveri, M., Vaiani, S.C., 2009. Note illustrative della Carta Geologica d’Italia alla scala 1:50.000. I.S.P.R.A.. Regione Emilia Romagna, Foglio 18, Salsomaggiore Terme.Google Scholar
Carbonell, E., Bermudez de Castro, J.M., Pares, J.M., Perez-Gonzalez, A., Cuenca-Bescos, G., Olle, A., Mosquera, M., Huguet, R., van der Made, J., Rosas, A., Sala, R., Vallverdu, J., Garcia, N., Granger, D.E., Martinon-Torres, M., Rodriguez, X., Stock, G.M., Verges, J.M., Allue, E., Burjachs, F., Caceres, I., Canals, A., Benito, A., Diez, C., Lozano, M., Mateos, A., Navazo, M., Rodriguez, J., Rosell, J., Arsuaga, J.L., 2008. The first hominin in Europe. Nature London 452 (7186), 465469.CrossRefGoogle Scholar
Channell, J.E.T., Poli, M.S., Rio, D., Sprovieri, R., Villa, G., 1994. Magnetic stratigraphy and biostratigraphy of Pliocene “Argille Azzurre” (northern Appennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 110, 83102.CrossRefGoogle Scholar
Cita, M.B., Gibbard, P.L., Head, M.J., ICS Subcommission on Quaternary Stratigraphy, 2012. Formal ratification of the GSSP for the base of the Calabrian stage (second stage of the Pleistocene series, Quaternary system). Episodes 5 (3), 388397.CrossRefGoogle Scholar
Coltorti, M., Albianelli, A., Bertini, A., Ficcarelli, G., Laurenzi, M.A., Napoleonem, G., Torre, D., 1998. The Colle Curti mammal site in the Colfiorito areas (Umbro-Marchean Apennine, Italy): geomorphology, stratigraphy, paleomagnetism and palynology. Quaternary International 47-48, 107116 .CrossRefGoogle Scholar
Coltorti, M., Feraud, G., Marzoli, A., Peretto, C., Ton-That, T., Voinchet, P., Bahain, J.J., Minelli, A., Hohenstein, U.T., 2005. New 40 Ar/39 Ar, stratigraphic and palaeoclimatic data on the Isernia la Pineta lower palaeolithic site, Molise, Italy. Quaternary International 131 (1), 1122.CrossRefGoogle Scholar
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio, C., Hennissen, J.A.I., Leng, M.J., Petrizzo, M.R., Raffi, I., Raineri, G., Stephenson, M.H., 2016. Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: implications for climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 234251.CrossRefGoogle Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.CrossRefGoogle Scholar
Fortelius, M., Mazza, P., Sala, B., 1993. Stephanorhinus (Mammalia: Rhinocerontidae) of the western European Pleistocene, with a revision of S. etruscus (Falconer, 1868). Palaeontographia Italica 80, 63155.Google Scholar
García, N., Arsuaga, J.L., 2001. Ursus dolinensis: a new species of Early Pleistocene ursid from Trinchera Dolina, Atapuerca (Spain) = Ursus dolinensis: une nouvelle espece d’urside du Pleistocene inferieur de Trinchera Doline, Atapuerca (Espagne). Compte Rendues de l’Academie des Sciences — Series IIA — Earth and Planetary Science 332 (11), 717725.Google Scholar
García, N., 2004. New results on the remains of Ursidae from Untermassfeld: comparisons with Ursus dolinensis from Atapuerca and other early and middle Pleistocene sites. 18th International Senckenberg Conference in Weimar.Google Scholar
Gliozzi, E., Abbazzi, L., Argenti, P., Azzaroli, A., Caloi, L., Capasso Barbato, L., Di Stefano, G., Esu, D., Ficcarelli, G., Girotti, O., Kotsakis, T., Masini, F., Mazza, P., Mezzabotta, C., Palombo, M.R., Petronio, C., Rook, L., Sala, B., Sardella, R., Zanalda, E., Torre, D., 1997. Biochronology of selected mammals, molluscs and ostracods from the middle Pliocene to the late Pleistocene in Italy; the state of art. Rivista Italiana di Paleontologia e Stratigrafia 103 (3), 369387.Google Scholar
Gunderson, K., Kodoma, K.P., Anastasio, D.J., Pazzaglia, F.J., 2012. Rock-magnetic cyclostratigraphy for the late Plioceneeearly Pleistocene Stirone section, northern Appennine mountain front, Italy Geological Society of London, Special Publications 373, 116 Google Scholar
Gunderson, K., Anastasio, D.J., Pazzaglia, F.J., Picotti, V., 2013. Falut slip rate variability on 104 — 105 time scales for the Salsomaggiore blind thrust fault, Northern Appennines, Italy. Tectonophysics 608, 356365.CrossRefGoogle Scholar
Gunderson, K., Pazzaglia, F.J., Picotti, V., Anastasio, D.A., Kodama, K.P., Rittenour, T., Frankel, K.F., Ponza, A., Berti, C., Negri, A., Sabbatini, A., 2014. Unraveling tectonic and climatic controls on synorogenic growth strata (Northern Appennines, Italy). Geological Society of America Bulletin 126 (3-4), 532552.CrossRefGoogle Scholar
Head, M.J., Gibbard, P.L., 2005. EarlyeMiddle Pleistocene transitions: an overview and recommendation for the defining boundary. In: Head, M.J., Gibbard, P.L. (Eds.), Early-Middle Pleistocene Transitions: the Land-Ocean Evidence, vol. 247. Geological Society, London, pp. 118. Special Publication.Google Scholar
Kahlke, R.-D., 2006. Untermassfeld — a late Early Pleistocene (Epivillafranchian) fossil site near Meiningen (Thuringia, Germany) and its position in the development of the European mammal fauna. British Archaeological Reports, International Series 1578, 1144.Google Scholar
Kahlke, R.-D., 2007. Late early Pleistocene European large mammals and the concept of an Epivillafranchian Biochron. Courier Forschunginstitut Senckenberg 20 (259), 265278.Google Scholar
Kahlke, R.-D., García, N., Kostopoulos, D.S., Lacombat, F., Lister, A.M., Mazza, P., Spassov, N., Titov, V.V., 2011. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quaternary Science Reviews 30 (11), 13681395.CrossRefGoogle Scholar
Kostopoulos, D.S., 1997. The Plio-Pleistocene artiodactyls (Vertebrata, Mammalia) of Macedonia 1. The fossiliferous site “Apollonia-1”, Mygdonia basin of Greece. Geodiversitas 19 (4), 845875.Google Scholar
Kukla, G., Collins, B.P., Blender, M.L., 1979. Radiometric age of the Arctica islandica boundary in Italy, 2 M.Y. Annales géologiques des Pays Helléniques, hors séries 2, 699709.Google Scholar
Lacombat, F., 2006. Mophological and biometrical differentiation of the teeth from Pleistocene species of Stephanorhinus (Mammalia, Perissodactyla, Rhinocerotidae) in Mediterranean Europe and the Massif central, France. Palaeontographica Abteilung A Band 274, 71111.CrossRefGoogle Scholar
Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J., Wilson, D., 2004. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge, pp. 409440.Google Scholar
Manzi, G., Magri, D., Palombo, M.R., 2011. Early-Middle Pleistocene environmental changes and human evolution in the Italian peninsula. Quaternary Science Reviews 30, 14201438.CrossRefGoogle Scholar
Mary, C., Iaccarino, S., Courtillot, V., Besse, J., Aissaoui, D.M., 1993. Magnetostratigraphy of Pliocene sediments from the Stirone River (Po valley). Geophysical Journal International 112, 359380.CrossRefGoogle Scholar
Masini, F., Sala, B., 2007. Large- and small-mammal distribution patterns and chronostratigraphic boundaries from the late Pliocene to the middle Pleistocene of the Italian peninsula. Quaternary International 160 (1), 356.CrossRefGoogle Scholar
Maul, L.C., Markova, A.K., 2007. Similarity and regional differences in Quaternary arvicolid evolution in central and eastern Europe. Quaternary International 160 (1), 8199.CrossRefGoogle Scholar
Musil, R., 2001. Die Ursiden-Reste aus dem Unterpleistozan von Untermassfeld. In: Kahlke, R.D. (Ed.), Das Pleistozan von Untermassfeld bei Meiningen (Thuringen). Romisch-Germanisches Museum Mainz, Mainz 2, pp. 633658.Google Scholar
Mutti, E., Tinterri, D., Di Biase, D., Fava, L., Mavilla, N., Angella, S., Calabrese, L., 2000. Delta-front facies associations of ancient flood dominated fluvio-deltaic systems. Revista de la Sociedad Geologica de Espana 13 (2), 165190.Google Scholar
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations in the Alps. Geology 31, 989992.CrossRefGoogle Scholar
Muttoni, G., Scardia, G., Kent, D.V., 2010. Human migration into Europe during the late early Pleistocene climate transition. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 7993.CrossRefGoogle Scholar
Muttoni, G., Scardia, G., Kent, D.V., Morsiani, E., Tremolada, F., Cremaschi, M., Peretto, C., 2011. First dated human occupation of Italy at ∼0.85 Ma during the Late Early Pleistocene climate transition. Earth and Planetary Science Letters 307, 241252.CrossRefGoogle Scholar
Muttoni, G., Scardia, G., Kent, D.V., 2013. A critique of evidence for human occupation of Europe older than the Jaramillo subchron (∼1 Ma): comment on ‘The oldest human fossil in Europe from Orce (Spain)’ by Toro-Moyano et al. (2013). Journal of Human Evolution 65, 746749.CrossRefGoogle Scholar
Muttoni, G., Kent, D.V., Scardia, G., Monesi, E., 2014. Migration of hominins with megaherbivore s into Europe via the Danube-Po gateway in the late Matuyama climate revolution. Rivista Italiana di Paleontologia e Stratigrafia 120 (3), 351365.Google Scholar
Muttoni, G., Scardia, G., Dimitrijević, V., Kent, D.V., Monesi, E., Mrdjic, N., Korać, M., 2015a. Age of Mammthus trogontherii from Kostolac, Serbia, and the entry of megaherbivore s into Europe during late Matuyama climate revolution. Quaternary Research 84 (3), 439447.CrossRefGoogle Scholar
Muttoni, G., Kent, D.V., Scardia, G., Martin, R.A., 2015b. Bottleneck at Jaramillo for human migration to Iberia and the rest of Europe. Journal of Human Evolution 80, 187190.CrossRefGoogle ScholarPubMed
Palombo, M.R., Mussi, M., 2006. Large mammal guilds at the time of the first human colonization of Europe: the case of the Italian Pleistocene record. Quaternary International 149, 94103.CrossRefGoogle Scholar
Palombo, M.R., 2014. Deconstructing mammal dispersal and faunal dynamics in SW Europe during the Quaternary. Quaternary Science Review 96, 5071.CrossRefGoogle Scholar
Pinti, D., Quidelleur, X., Lahitte, P., Aznar, C., Chiesa, S., Gillot, P.Y., 2001. K-Ar dating of an Early Middle Pleistocene distal tephra in the interglacial varved succession of Pianico — Sellere (southern Alps, Italy). Earth and Planetary Science Letters 188, 17 CrossRefGoogle Scholar
Raffi, S., 1986. The significance of marine boreal molluscs in the Early Pleistocene faunas of the Mediterranean area. Palaeogeography, Palaeoclimatology, Palaeoecology 52, 267289.CrossRefGoogle Scholar
Raffi, I., 2002. Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma). Marine Micropaleontology 45, 2555.CrossRefGoogle Scholar
Rio, D., Raffi, I., Villa, G., 1990. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. In: Proceedings of the Ocean Drilling Program Scientific Results 107, Ocean Drilling Program. Texas A&M University, College Station, Texas, pp. 513533.Google Scholar
Sala, B., 1986. Bison schoetensacki Freud. from Isernia la Pineta (early Mid-Pleistocene — Italy) and revision of the European species of bison. Palaeontographia Italica 74, 113170.Google Scholar
Scardia, G., Muttoni, G., Sciunnach, D., 2006. Subsurface magnetostratigraphy of Pleistocene sediments from the Po plain (Italy): constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin 118 (11-12), 12991312.CrossRefGoogle Scholar
Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., Sciunnach, D., Piccin, A., 2012. Stratigraphic evidence of a middle Pleistocene climate-driven flexural uplift in the Alps. Tectonics 31 (6), 118.CrossRefGoogle Scholar
Shackleton, N.J., Opdyke, N.D., 1976. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28-239, late Pliocene to latest Pleistocene. Memoir Geological Society of America 145, 449464.CrossRefGoogle Scholar
Shackleton, N.J., 1995. New data on the evolution of Pliocene climate variability. In: Vrba, E., Denton, G.H., Partridge, T.C., Burckle, L.H. (Eds.), Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven, pp. 242248.Google Scholar
Toro-Moyano, I., Martinez-Navarro, B., Agusti, J., Souday, C., Bermùdez de Castro, J.M., Martinon-Torres, M., Fajardo, B., Duval, M., Falgueres, C., Oms, O., Pares, J.M., Anadon, P., Julia, R., Garcia-Aguilar, J.M., Moigne, A.M., Espigares, M.P., Ros-Montoya, S., Palmqvist, P., 2013. The oldest human fossil in Europe, from Orce (Spain). Journal of Human Evolution 65 (1), 19.CrossRefGoogle ScholarPubMed