Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T04:57:18.076Z Has data issue: false hasContentIssue false

Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada

Published online by Cambridge University Press:  20 January 2017

Gabriel Magnan*
Affiliation:
Département de Géographie Université Laval, 2405 rue de la Terrasse, Québec, Canada G1V 0A6
Martin Lavoie
Affiliation:
Département de Géographie Université Laval, 2405 rue de la Terrasse, Québec, Canada G1V 0A6
Serge Payette
Affiliation:
Département de Biologie, Université Laval, 1045 avenue de la Médecine, Québec, Canada G1V 0A6
*
*Corresponding author at: GEOTOP, Université du Québec á Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8. Fax: + 1 514 987 3635. E-mail addresses:[email protected] (G. Magnan), [email protected] (M. Lavoie), [email protected] (S. Payette).

Abstract

A 7000-year record of local fire history was reconstructed from three ombrotrophic peatlands in the James Bay lowlands (northwestern Québec, Canada) using a high-resolution analysis of macroscopic charcoal (long axis≥0.5 mm). The impact of fire on vegetation changes was evaluated using detailed analysis of plant macrofossils. Compared to upland boreal forest, fire incidence in these Sphagnum-dominated bogs is rather low. Past fire occurrence seems to have been controlled primarily by internal processes associated with local hydroseral succession. Size of the peatland basin and distance from the well-drained forest soils also appear to be factors controlling fire occurrence. The impact of peatland fires on long-term vegetation succession appears negligible except in a forested bog, where it initiated the replacement of Sphagnum by mosses. In some circumstances, fire caused marked changes in the bryophyte assemblages over many decades. However, ombrotrophic peatland vegetation is generally resilient to surface fire.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlen-Pouliot, Y., (2009). Développement holocène et dynamique récente des tourbières minérotrophes structurées du Haut-Boréal Québécois. Ph.D. thesis, Université Laval, . Québec.Google Scholar
Arseneault, D., Sirois, L., (2004). The millennial dynamics of a boreal forest stand from buried trees. Journal of Ecology 92, 490504.Google Scholar
Beaulieu-Audy, V., Garneau, M., Richard, P.J.H., Asnong, H., (2009). Holocene palaeoecological reconstruction of three boreal peatlands in the La Grande Rivière region, Québec, Canada. The Holocene 19, 459476.Google Scholar
Benscoter, B.W., (2006). Post-fire bryophyte establishment in a continental bog. Journal of Vegetation Science 17, 647652.Google Scholar
Benscoter, B.W., Wieder, R.K., (2003). Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Canadian Journal of Forest Research 33, 25092513.Google Scholar
Benscoter, B.W., Wieder, R.K., Vitt, D.H., (2005). Linking microtopography with post-fire succession in bogs. Journal of Vegetation Science 16, 453460.Google Scholar
Bhiry, N., Filion, L., (2001). Analyse des macrorestes végétaux. Payette, S., Rochefort, L., Écologie des tourbières du Québec–Labrador. Les Presses de l'Université Laval, Québec. 259273.Google Scholar
Busque, D., Arsenault, D., (2005). Fire disturbance of larch woodlands in string fens in northern Quebec. Canadian Journal of Botany 83, 599609.Google Scholar
Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., Solick, D., (2009). Climate vegetation–fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. Journal of Geophysical Research 114, G04017.Google Scholar
Couillard, L., Payette, S., (1985). Évolution holocène d'une tourbière – perg"lisol (Québec nordique). Canadian Journal of Botany 63, 11041121.CrossRefGoogle Scholar
Couturier, S., St-Martin, G., (1990). Effet des feux de forêt sur les caribous migrateurs, Nord du Québec. Ministère du Loisir, de la Chasse et de la Pêche, Direction régionale du Nouveau Québec, Sainte-Foy.Google Scholar
Crum, H.A., Anderson, L.D., (1981). Mosses of Eastern North America. Columbia University Press, New York.Google Scholar
Dyke, A.S., Prest, V.K., (1987). Late Wisconsinian and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41, 237263.Google Scholar
Environment Canada, . (2010). Climatic normals for Canada, 1971–2000. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_f.html?&.Google Scholar
Filion, L., (1984). A relationship between dunes, fire and climate recorded in the Holocene deposits of Québec. Nature 309, 543546.Google Scholar
Filion, L., Saint-Laurent, D., Desponts, M., Payette, S., (1991). The late Holocene record of aeolian and fire activity in northern Quebec, Canada. The Holocene 1, 201208.Google Scholar
Foster, D.R., Glaser, P.H., (1986). The raised bogs of south-eastern Labrador, Canada: classification, distribution, vegetation, and recent dynamics. Journal of Ecology 74, 4772.Google Scholar
Gajewski, K., Payette, S., Ritchie, J.C., (1993). Holocene vegetation history at the boreal forest shrub−tundra transition in north-western Québec. Journal of Ecology 81, 433443.Google Scholar
Gavin, D.G., (2001). Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43, 2744.Google Scholar
Godbout, B., (2002). Analyse anthracologique et macrofossile de dépôts tourbeux du Haut boréal, Québec nordique. M.Sc. thesis, Université Laval, Québec.Google Scholar
Groeneveld, E.V.G., Rochefort, L., (2005). Polytrichum strictum as a solution to frost heaving in disturbed ecosystems: a case study with milled peatlands. Restoration Ecology 13, 7482.CrossRefGoogle Scholar
Hardy, L., (1977). La déglaciation et les épisodes lacustres et marins sur le versant québécois des basses terres de la Baie de James. Géographie Physique et Quaternaire 31, 261273.Google Scholar
Hellberg, E., Niklasson, M., Granström, A., (2004). Influence of landscape structure on patterns of forest fires in boreal forest landscapes in Sweden. Canadian Journal of Forest Research 34, 332338.CrossRefGoogle Scholar
Higuera, P.E., Sprugel, D.G., Brubaker, B., (2005). Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. The Holocene 15, 238251.Google Scholar
Hörnberg, G., Ohlson, M., Zackrisson, O., (1995). Stand dynamics, regeneration pattern and long-term continuity in boreal old-growth Picea abies swamp-forests. Journal of Vegetation Science 6, 291298.Google Scholar
Hörnberg, G., Zackrisson, O., Segerstrom, U., Svensson, B.W., Ohlson, M., Bradshaw, R.H.W., (1998). Boreal swamp forests. Bioscience 48, 795802.Google Scholar
Ireland, R.R., (1982). Moss Flora of the Maritime Provinces. National Museum of Natural Sciences, Ottawa, Ontario.Google Scholar
Jackson, R.M., Mason, P.A., (1984). Mycorrhiza. Edward Arnold, London.Google Scholar
Jasieniuk, M.A., Johnson, E.A., (1982). Peatland vegetation organization and dynamics in the western subarctic, Northwest Territories, Canada. Canadian Journal of Botany 60, 25812593.Google Scholar
Johnson, E.A., (1992). Fire and Vegetation Dynamics. Studies from the North American Boreal Forest. Cambridge University Press, Cambridge.Google Scholar
Jowsey, P.C., (1966). An improved peat sampler. The New Phytologist 65, 245248.Google Scholar
Juggins, S., (2002). Palaeo Data Plotter. Beta Test Version 1.0. University of Newcastle, New Castle, England.Google Scholar
Kuhry, P., (1994). The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology 82, 899910.Google Scholar
Lavoie, C., Pellerin, S., (2007). Fires in temperate peatlands (southern Quebec): past and recent trends. Canadian Journal of Botany 85, 263272.Google Scholar
Lavoie, M., Filion, L., Robert, E., (2009). Boreal peatland margins as repository sites of long term natural disturbances of balsam fir/spruce forests. Quaternary Research 71, 295306.Google Scholar
Lévesque, P.E.M., Dinel, H., Larouche, A.C., (1988). Guide illustré des macrofossiles végétaux des tourbières du Canada, Agriculture Canada. Ministère des approvisionnements et services, Publication no. 1817.Google Scholar
Loisel, J., Garneau, M., (2010). Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: potential and limits of multi-proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 493533.Google Scholar
Marie-Victorin, F., (1995). Flore laurentienne. 3rd editionLes Presses de l'Université de Montréal, Montréal.Google Scholar
Montgomery, F.H., (1977). Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto.Google Scholar
Morneau, C., Payette, S., (1989). Postfire lichen−spruce woodland recovery at the limit of the boreal forest in northern Québec. Canadian Journal of Botany 67, 27702782.Google Scholar
Ohlson, M., Tryterud, E., (2000). Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. The Holocene 10, 519525.Google Scholar
Ohlson, M., Korbol, A., Okland, R.H., (2006). The macroscopic charcoal record in forested boreal peatlands in southeast Norway. The Holocene 16, 731741.Google Scholar
Paitre, C., (2008). Dynamique des marges forestières de milieux tourbeux du Haut-Boréal, Québec nordique. Ph.D. thesis, Université Laval, Québec.Google Scholar
Parisien, M.-A., Sirois, L., (2003). Distribution and dynamics of tree species across a fire frequency gradient in the James Bay region of Quebec. Canadian Journal of Forest Research 33, 243256.Google Scholar
Payette, S., (2001a). Les principaux types de tourbières. Payette, S., Rochefort, L., Écologie des tourbières du Québec-Labrador. Les Presses de l'Université Laval, Québec. 3989.Google Scholar
Payette, S., (2001b). Les processus et les formes p"riglaciaires. Payette, S., Rochefort, L., Écologie des tourbières du Québec-Labrador. Les Presses de l'Université Laval, Québec. 199239.Google Scholar
Payette, S., Gagnon, R., (1985). Late Holocene deforestation and tree regeneration in the forest tundra of Québec. Nature 313, 570572.Google Scholar
Payette, S., Morneau, C., Sirois, L., Desponts, M., (1989). Recent fire history of the northern Québec biomes. Ecology 70, 656673.Google Scholar
Pellerin, S., Lavoie, C., (2003). Recent expansion of jack pine in peatlands of southeastern Quebec: a paleoecological study. Ecoscience 10, 247257.Google Scholar
Pitk"nen, A., Turunen, J., Tolonen, K., (1999). The role of fire in the carbon dynamics of a mire, eastern Finland. The Holocene 9, 453462.Google Scholar
Pitkänen, A., Tolonen, K., Jungner, H., (2001). A basin-based approach to the long-term history of forest fires as determined from peat strata. The Holocene 11, 599605.Google Scholar
Pitkänen, A., Huttunen, P., Tolonen, K., Jungner, H., (2003). Long-term fire frequency in the spruce dominated forests of the Ulvinsalo strict nature reserve, Finland. Forest Ecology and Management 176, 305319.Google Scholar
Robichaud, A., Bégin, Y., (2009). Development of a raised bog over 9000 years in Atlantic Canada. Mires and Peat 5, 119.Google Scholar
Robinson, S.D., Moore, T.R., (2000). The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arctic, Antarctic, and Alpine Research 32, 155166.Google Scholar
SOPFEU (Société de protection contre les feux), . ((Société de protection contre les feux), 2004). Mapping and Dating of Fires in Bay James Area, 1976–2004. Radisson/Val-d'Or office, Québec.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Tarnocai, C., Kettles, I.M., Lacelle, B., (2005). Peatlands of Canada Database. Digital Database. Agriculture and Agri-Food Canada, Research Branch, Ottawa, Ontario.Google Scholar
Thibault, S., Payette, S., (2009). Recent permafrost degradation in bogs of the James Bay area, northern Québec, Canada. Permafrost and Periglacial Processes 20, 383389.Google Scholar
Turetsky, M.R., Wieder, R.K., (2001). A direct approach to quantifying organic matter lost as a result of peatland wildfire. Canadian Journal of Forest Research 31, 363366.Google Scholar
Turetsky, M.R., Wieder, R.K., Halsey, L.A., Vitt, D.H., (2002). Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters 29, http://dx.doi.org/10.1029/2001GL014000Google Scholar
Turetsky, M.R., Amiro, B.D., Bosch, E., Bhatti, J.S., (2004). Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochemical Cycles 18, GB4014.Google Scholar
Valirenta, M., Korhola, A., Seppä, H., Tuittila, E.-S., Sarmaja-Korjonen, K., Laine, J., Alm, J., (2007). High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene 17, 10931107.Google Scholar
van Bellen, S., Garneau, M., Booth, R.K., (2011). Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate driven ecohydrological change. The Holocene http://dx.doi.org/10.1177/0959683611405243CrossRefGoogle Scholar
Vitt, D.H., Andrus, R.E., (1977). The genus Sphagnum in Alberta. Canadian Journal of Botany 55, 331357.Google Scholar
Wieder, R.K., Scott, K.D., Kamminga, K., Vile, M.A., Vitt, D.H., Bone, T., Xu, B., Benscoter, B.W., Bhatti, J.S., (2009). Postfire carbon balance in boreal bogs of Alberta, Canada. Global Change Biology 15, 6381.Google Scholar
Zoltai, S.C., Morissey, L.A., Livingston, G.P., de Groot, W.J., (1998). Effect of fires on carbon cycling in North American boreal peatlands. Environmental Reviews 6, 1324.Google Scholar