Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T01:30:26.744Z Has data issue: false hasContentIssue false

Holocene Environmental Signals from Mollusk Assemblages in Burgundy (France)

Published online by Cambridge University Press:  20 January 2017

Denis-Didier Rousseau
Affiliation:
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, and URA CNRS 327, Institut des Sciences de l'Evolution, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Nicole Limondin
Affiliation:
UPR CNRS 7557, Laboratoire de Chrono-écologie, 16 route de Gray F-25030 Besancon Cedex, France
Jean-Jacques Puissegur
Affiliation:
Hauteroche, 21125 Les Laumes, France

Abstract

The malacofaunas of Burgundy, France, reflect changes in climate and the activities of man during the Holocene. Statistical analyses based on the Shannon diversity index and correspondence analysis are used to describe the mollusk assemblages in a composite sequence based on three well-dated sites. The variation demonstrated by the mollusks suggests that a two-step warming took place between 10,000 and 9000 and 8000 and 6000 yr B.P. in relative agreement with the timing of the deglaciation in the tropical Atlantic Ocean proposed by Mix and Ruddiman (1985, Quaternary Science Reviews 4, 59-108). High humidity, partly associated with widespread inundations of the valleys between 10,000 and 8000 yr B.P., may be related to estimated variations in the rate of freshwater discharge to the Atlantic Ocean reported by Fairbanks (1989, Nature 342, 637-642). The increasing impact of human activities on the environment during the past 2000 yr is indicated by the low diversity of the mollusk assemblages, demonstrating the need for careful interpretation of the youngest Holocene sediments in this region.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrewicz, S. W. (1984). Late Quaternary molluscan succession of the Malopolska Upland. Bulletin of the Polish Academy of Sciences, Earth Sciences 32, 2736.Google Scholar
Atkinson, T. C Briffa, K. R., and Coope, G. R. (1987). Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, 587592.Google Scholar
Beaulieu, J. L. de Pons, A., and Reille, M. (1988). Histoire de la flore et de la végétation du Massif Central (France) depuis la fin de la dernière glaciation. Cahiers de Micropaléontologie N.S. 3, 536.Google Scholar
Benzecri, J. P., and Benzecri, F. (1980). “Pratique de l’analyse des données.” Dunod, Paris.Google Scholar
Broecker, W. S., and Denton, G. H. (1989). The role of ocean-atmosphere reorganizations in glacial cycles. Geochimica et Cosmo-ckimica Acta 53, 24652501.Google Scholar
COHMAP Members (1988). Climatic changes of the last 18,000 years: Observations and model simulations. Science 241, 10431052.Google Scholar
Coope, G. R. (1987). Fossil beetle assemblages as evidence for sudden and intense climatic changes in the British Isles during the last 45,000 years. In “Abrupt climatic Change” (Berger, W. H. and Labey-rie, L. D., Eds.), pp. 147150. Reidel, Dordrecht.Google Scholar
Duplessy, J. C Delibrias, G. Turon, J. L. Pujol, C, and Duprat, J. (1981). Deglacial warming of the northeastern Atlantic ocean: Corre-lation with the paleoclimatic evolution of the European continent. Palaeogeography, Palaeoclimatoiogy, Palaeoecology 35, 121144.Google Scholar
Dyduch-Falniowska, A. (1988). Similarity, diversity and equitability of snail communities in lower mountain zone in the Tatra mountains. Folia Malacologia 1112, 728.Google Scholar
Fairbanks, R. G. (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Greenacre, M. J. (1984). “Theory and Applications of Correspondence Analysis.” Academic Press, New York.Google Scholar
Huntley, B. (1990). European post-glacial forests: compositional changes in response to climatic change. Journal of Vegetation Science 1, 507518.CrossRefGoogle Scholar
Kerney, M. P. (1963). Late-glacial deposits on the Chalk of south-east England. Philosophical Transactions Royal Society London B 246, 203254.Google Scholar
Kerney, M. P., and Cameron, R. A. D. (1979). “A Field Guide to the Land Snails of Britain and North West Europe.” Collins, London.Google Scholar
Kerney, M. P. Preece, R. C, and Turner, C. (1980). Molluscan and plant biostratigraphy of some late Devensian and Flandrian deposits in Kent. Philosophical Transactions of the Royal Society of London B 291, 1044: 143.Google Scholar
Limondin, N., and Rousseau, D. D. (1991). Holocene climate as re-flected by a malacological sequence at Verrières, France. Boreas 20, 207229.Google Scholar
Lozek, V. (1964). Quartärmollusken der Tschechoslowakei. Rozpravy Ustredniho ustavu geologického 31, 1374.Google Scholar
Lozek, V. (1982). Contribution of malacology to the chronological subdivision of the Central European Holocene. Striae 16, 8487.Google Scholar
Magurran, A. E. (1988). “Ecological Diversity and Its Measurement.” Princeton Univ. Press, Princeton.Google Scholar
Mangerud, J. Andersen, S. T. Berglund, B. E., and Donner, J. J. (1974). Quaternary stratigraphy of Norden, a proposal for terminol-ogy and classification. Boreas 3, 109128.Google Scholar
Meijer, T. (1984). Holocene Molluskenfauna’s uit de Stevenshofje-spolder in Leiden. Bodemonderzoek in Leiden 6, 134151.Google Scholar
Mix, A. C, and Ruddiman, W. F. (1985). Structure and timing of the last deglaciation: Oxygen-isotope evidence. Quaternary Science Reviews A, 59108.CrossRefGoogle Scholar
Nilsson, A. (1968). “De pa land levande molluskerna inom Abisko Na-tionalpark. Redogörelse för undersökningar utförda aren 1966–1967.” Stencil, Landskrona.Google Scholar
Patterson, W. S. B., and Hammer, C. U. (1987). Ice core and other glaciological data. In “The Geology of North America K3: North America and Adjacent Oceans during the Last Deglaciation” (Ruddiman, W. F. and Wright, H. E., Eds.), pp. 91109. Geological Society of America, Boulder.Google Scholar
Peteet, D. M. Vogel, J. S. Nelson, D. E. Southon, J. R. Nickmann, R. J., and Heusser, L. E. (1990). Younger Dryas climatic reversal in northeastern USA? AMS ages for an old problem. Quaternary Research 33, 219230.CrossRefGoogle Scholar
Puisségur, J. J. (1976). Mollusques continentaux quaternaires de Bour-gogne. Significations stratigraphiques et climatiques. Rapports avec d’autres faunes bordales de France. Mémoires géologiques Univer-sité Dijon 3, 1241.Google Scholar
Richard, H. (1988). Palynologie et climat. Histoire et Mesure 3, 359384.Google Scholar
Rind, D. Peteet, D. Broecker, W. S. McIntyre, A., and Ruddiman, W. F. (1986). The impact of cold North Atlantic sea surface temper-atures on climate: Implications for the Younger Dryas cooling (11-10k). Climate Dynamics 1, 333.Google Scholar
Rousseau, D. D. (1987). Paleoclimatology of the Achenheim series (middle and upper Pleistocene, Alsace, France). A malacological analysis. Palaeogeography, Palaeoclimatoiogy, Palaeoecology 59, 293314.Google Scholar
Rousseau, D. D. (1991). Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 35, 195209.Google Scholar
Rousseau, D. D. (1992). Terrestrial molluscs as indicators of global ae-olian dust fluxes during glacial stages. Boreas 21, 105109.Google Scholar
Rousseau, D. D., and Puisségur, J. J. (1990). A 350,000 years climatic record from the loess sequence of Achenheim, Alsace, France. Boreas 19, 203216.Google Scholar
Sydow, U. von, and Forshed, N. (1986). “Vegetations-Abisko National Park.” LM Kartor.Google Scholar