Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T08:11:40.192Z Has data issue: false hasContentIssue false

Holocene climate phases from buried soils in Tigray (northern Ethiopia): comparison with lake level fluctuations in the Main Ethiopian Rift

Published online by Cambridge University Press:  20 January 2017

Francesco Dramis*
Affiliation:
Department of Geological Sciences, “Roma Tre” University, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
Mohammed Umer
Affiliation:
Department of Geology and Geophysics, University of Addis Ababa, P.O. Box 3434, Addis Ababa, Ethiopia
Gilberto Calderoni
Affiliation:
Department of Earth Sciences, “La Sapienza” University, Piazzale Aldo Moro, 5, 00185 Rome, Italy
Mitiku Haile
Affiliation:
Department of Soil Science, University College of Mekelle, P.O. Box 231, Mekelle, Ethiopia
*
*Corresponding author. Fax: +39-06-54888201.E-mail address:[email protected] (F. Dramis).

Abstract

Stratigraphic analysis of alluvial/colluvial sequences and 14C dating have been used as proxies for Holocene climate changes in the highlands of Tigray (northern Ethiopia). The studied records show alternations of buried soils and peaty–clayey sediments, pointing to wet, stabilization phases, and organic-free colluvium layers resulting from the abrupt occurrence of dry-climate episodes. The 14C dates, mostly unpublished, cluster in the 11,090–9915, 9465–9135, 8450–7330, 6720–3635, 2710–2345, and 1265–790 cal yr B.P. time spans. Evidence of subsequent pedogenesis is lacking in the area, apart from a buried humified horizon dated at 300 ± 60 14C yr B.P. (460–295 cal yr B.P.). Both the timing and the pattern of Tigray paleoclimatic events fit the corresponding framework, based on lake level changes, previously implemented for the Main Rift Valley. These findings give further support for arguing that the forcing mechanisms of the wet/dry fluctuations during the Holocene were effective over a large scale.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U., (1997). A prominent widespread event 8200 years ago. Geology 25, 483486.2.3.CO;2>CrossRefGoogle Scholar
Bard, K.A., Coltorti, M., Di Blasi, M.C., Dramis, F., and Fattovich, R., (2000). The environmental history of Tigray (northern Ethiopia) in the Middle and Late Holocene. a preliminary outline. Forum for African Archaeology and Cultural Heritage. African Archaeological Review 17, 6586.CrossRefGoogle Scholar
Beer, J., Mende, W., Stellmacher, R., (2000). The role of the sun in climate forcing. in: Alverson, K.D., Oldfield, F., Bradley, R.S., (Eds.), Past Global Changes and Their Significance for the Future, . Quaternary Science Reviews 19, 403415.Google Scholar
Benvenuti, M., Carnicelli, S., Belluomini, G., Dainelli, N., Di Grazia, S., Ferrari, G.A., Iasio, C., Sagri, M., Ventra, D., Balenwald, A., and Seifu, K., (2002). The Ziway–Shala lake basin (main Ethiopian rift, Ethiopia). a revision of basin evolution with special reference to the Late Quaternary. Journal of African Earth Sciences 35, 247269.CrossRefGoogle Scholar
Berakhi, O., (1995). Caratteristiche Geomorfologiche di Alcune Unità di Paesaggio delle Highlands del Tigray. (1995). Etiopia. Univ. of Camerino, Camerino, Italy. [Ph.D. thesis] Google Scholar
Berakhi, O., Brancaccio, L., Calderoni, G., Coltorti, M., Dramis, F., and Umer, M., (1998). The Mai Maikden sedimentary sequence. a reference point for the environmental evolution of the highlands of northern Ethiopia. Geomorphology 23, 2–4 127138.CrossRefGoogle Scholar
Berger, A.L., (1978). Long-term variations of daily insolation and Quaternary climate changes. Journal of Atmospheric Science 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Bonnefille, R., and Mohammed, U., (1994). Pollen inferred climatic fluctuations in Ethiopia during the last 3,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 331343.Google Scholar
Bonnefille, R., Robert, C., Delibrias, G., Elenga, T., Herbin, J.P., Lézine, A.M., Perinet, G., and Tiercelin, J.J., (1986). Paleoenvironment of Lake Abiyata, Ethiopia, during the past 2000 years. Geological Society of London 25, 253265.CrossRefGoogle Scholar
Bosellini, A., Russo, A., Fantozzi, P.L., Getaneh, A., and Tadesse, S., (1997). The Mesozoic succession of the Mekele outlier (Tigre province, Ethiopia). Memorie di Scienze Geologiche 49, 95116.Google Scholar
Brancaccio, L., Calderoni, G., Coltorti, M., Dramis, F., and Ogbaghebriel, B., (1997). Phases of soil erosion during Holocene in the highlands of western Tigray (northern Ethiopia). a preliminary report. Bard, K.A. The Environmental History and Human Ecology of Northern Ethiopia in the Late Holocene, Studi Africanistici, Ser. Etiopica Vol. 5, Istituto Univ. Orientale, Naples. 2944.Google Scholar
Butzer, K.W., (1981). Rise and fall of Axum, Ethiopia. a geoarcheological interpretation. American Antiquity 46, 471495.CrossRefGoogle Scholar
Calderoni, G., and Petrone, V., (1992). Department of Earth Sciences at the University of Rome radiocarbon dates I. Radiocarbon 34, 105113.CrossRefGoogle Scholar
Catt, J.A., (1986). Soils and Quaternary Geology. Clarendon Press, Oxford.Google Scholar
Chalié, F., and Gasse, F., (2002). Late Glacial–Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Paleogeography, Plaeoclimatology, Paleoecology 187, 259283.Google Scholar
Chernet, T., Eshete, G., (1982). Hydrogeology of Mekele Area (ND 37-II). Ethiopian Geological Survey, Ministry of Mines, Addis Ababa.Google Scholar
Darbyshire, I., Lamb, H., Mohammed, U., (2003). Forest clearance and regrowth in northern Ethiopia during the last 3000 years. The Holocene, in press CrossRefGoogle Scholar
de Menocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. in: Alverson, K.D., Oldfield, F., Bradley, R.S., (Eds.), Past Global Changes and Their Significance for the Future, . Quaternary Science Reviews 19, 347361.Google Scholar
Ethiopian Mapping Authority National Atlas of Ethiopia. (1988). Ethiopian Mapping Authority, Addis Ababa.Google Scholar
Fattovich, R., (1990). Remarks on the Pre-Axumite period in northern Ethiopia. Journal of Ethiopian Studies 23, 133.Google Scholar
Gamachu, D., (1977). Aspects of Climate and Water Budget in Ethiopia. University Press, Addis Ababa.Google Scholar
Gasse, F., (1977). Evolution of Lake Abhé (Ethiopia and TFAI), from 70,000 BP. Nature 265, 4245.CrossRefGoogle Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the last Glacial maximum. in: Alverson, K.D., Oldfield, F., Bradley, R.S., (Eds.), Past Global Changes and Their Significance for the Future, . Quaternary Science Reviews 19, 189211.Google Scholar
Gasse, F., and Fontes, J.C., (1989). Palaeoenvironments and palaeohydrology of a tropical closed lake (L. Asal, Djibouti) since 10,000 yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology 69, 67102.CrossRefGoogle Scholar
Gasse, F., Fontes, J.C., Van Campo, E., and Wei, K., (1996). Holocene environmental change in Bangong Co basin (western Tibet), Part 4, Discussion and conclusion. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.Google Scholar
Gasse, F., Rognon, P., and Street, F.A., (1980). Quaternary history of the Afar and Ethiopian rift lakes. Williams, M.A.J., and Faure, H. The Sahara and the Nile. Balkema, Rotterdam. 361400.Google Scholar
Gasse, F., and Street, F.A., (1978). Late Quaternary lake-level fluctuations and environments of the northern rift valley and Afar region (Ethiopia and Djibouti). Palaeogeography, Palaeoclimatology, Palaeoecology 25, 145150.Google Scholar
Gasse, F., and Van Campo, E., (1994). Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planetary Science Letters 126, 435456.CrossRefGoogle Scholar
Gillespie, R., Street-Perrott, F.A., and Switsur, R., (1983). Post-glacial arid episodes in Ethiopia have implication for climate prediction. Nature 306, 680683.CrossRefGoogle Scholar
Griffiths, J.F., (1962). The climate of Africa. Russell, E.W. The Natural Resources of East Africa. Hawkins, Nairobi. 7787.Google Scholar
Grove, A.T., Street, F.A., and Goudie, A.S., (1975). Former lake levels and climatic changes in the rift valley of southern Ethiopia. The Geographical Journal 141, 177194.CrossRefGoogle Scholar
Hamilton, A.C., (1982). Environmental History of East Africa. A Study of the Quaternary. Academic Press, London.Google Scholar
Hassan, F.A., (2002). Paleoclimate, food and culture change in Africa. an overview. Hassan, F.A. Droughts, Food and Culture. Kluwer Academic, New York. 1126.Google Scholar
Hurni, H., (1989). Late Quaternary of Simen and other mountains in Ethiopia. Mahaney, W.C. Quaternary and Environmental Research on East Africa Mountains. Balkema, Rotterdam. 105120.Google Scholar
Johnson, T.C., (1996). Sedimentary processes and signals of past climate change in the large lakes of East African Rift Valley. Johnson, T.C., and Odada, E.O. The Limnology, Climatology and Palaeoclimatology of the East African Lakes. Gordon & Breach, Amsterdam. 367412.Google Scholar
Lamb, A.L., Leng, M.J., Lamb, H.F., Telford, R.J., and Mohammed, M.U., (2002). Climatic and non-climatic effects on the δ18O and δ13C composition of Lake Awassa, Ethiopia, during the last 6.5 ka. Quaternary Science Reviews 21, 21992211.CrossRefGoogle Scholar
Lamb, A.L., Leng, M.J., Ricketts, D., Telford, R.J., and Umer, M.U., (2000). A 9000-yr oxygen and carbon isotope record of hydrological change in a small crater lake. The Holocene 10, 167177.CrossRefGoogle Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., El Hamouti, N., van der Kaars, S., Perkins, W.T., Pearce, N.J., and Roberts, C.N., (1995). Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373, 134137.Google Scholar
Lézine, A.M., and Bonnefille, R., (1982). Diagramme pollinique Holocene d'un sondage du lac Abiyata (Ethiopie, 7° 42′ Nord). Pollen et Spores 3-4, 463480.Google Scholar
Machado, M.J., Pérez-Gonzàles, A., and Benito, G., (1998). Paleoenvironmental changes during the last 4000 yr in the Tigray, northern Ethiopia. Quaternary Research 49, 312321.CrossRefGoogle Scholar
Merla, G., and Minucci, E., (1938). Missione geologica nel Tigrai. Rendiconti della Reale Accademia d'Italia 3, 1362.Google Scholar
Mohammed, M.U., and Bonnefille, R., (1994). Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 331343.Google Scholar
Mohammed, M.U., and Bonnefille, R., (1998). A Late Glacial to Late Holocene pollen record from a highland peat at Tamsaa, Bale Mountains, South Ethiopia. Global and Planetary Change 16-17, 121129.CrossRefGoogle Scholar
Mohammed, M.U., Bonnefille, R., and Johnson, T., (1996). Pollen and isotopic records of late Holocene sediments from Lake Turkana (N. Kenya). Palaeogeography, Palaeoclimatology, Palaeoecology 119, 371383.Google Scholar
Ritchie, J.C., and Haynes, C.V., (1987). Holocene vegetation zonation in the eastern Sahara. Nature 330, 352355.CrossRefGoogle Scholar
Roberts, N., (1989). The Holocene. An Environmental History. Basil Blackwell, Oxford.Google Scholar
Roche, E., and Bikwemu, G., (1989). Paleoenvironment change on the Zaire–Nile ridge in Burundi; the last 20,000 years. an interpretation of palynological data from the Kashiru Core, Ijenda, Burundi. Mahoney, W.C. Quaternary and Environmental Research on East African Mountains. Balkema, Rotterdam. 231242.Google Scholar
Servant, M., and Servant-Vildary, S., (1980). L'environment quaternaire du basin du Tchad. Williams, M.A.J., and Faure, H. The Sahara and the Nile. Balkema, Rotterdam. 133162.Google Scholar
Stocker, F.S., (2000). Past and future reorganizations in the climate system. in: Alverson, K.D., Oldfield, F., Bradley, R.S., (Eds.), Past Global Changes and Their Significance for the Future. Quaternary Science Reviews 19, 301319.Google Scholar
Street, F.A., (1979). Late Quaternary Lakes in the Ziway–Shalla Basin. South Ethiopia. Univ. of Cambridge, Cambridge, UK. [Ph.D. thesis] Google Scholar
Street-Perrott, F.A., and Perrott, R.A., (1990). Abrupt climate fluctuations in the tropics. the influence of Atlantic Ocean circulation. Nature 343, 607612.CrossRefGoogle Scholar
Street-Perrott, F.A., Roberts, N., and Metcalfe, S., (1985). Geomorphic implications of Late Quaternary hydrological and climatic changes in the Northern Hemisphere tropics. Douglas, I., and Spencer, T. Environmental Change and Tropical Geomorphology. Allen & Unwin, London. 165183.Google Scholar
Stuiver, M., and Polach, H.A., (1977). Reporting of 14C data. Radiocarbon 19, 355363.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J., (1993). Extended 14C data base and revised Calib. 4.1.2. Radiocarbon 35, 215230.Google Scholar
Talbot, M.R., Livingstone, D.A., Palmer, D.G., Maley, J., Melack, J.M., Delibrias, G., and Gulliksen, J., (1984). Preliminary results from sediment core from Lake Bosumtwi, Ghana. Coetze, J.A., and Van Zinderen-Bakker, E.M. Palaeoecology of Africa. Balkema, Rotterdam. 173192.Google Scholar
Tegene, B., (1997). Variabilities of soil catena on degraded hillslopes of Watiya catchment, Welo, Ethiopia. SINET, Ethiopian Journal of Science 20, 151175.CrossRefGoogle Scholar
Telford, R.J., and Lamb, H.F., (1999). Ground water mediated response to Holocene climate change recorded by diatom stratigraphy of an Ethiopian crater lake. Quaternary Research 52, 6375.Google Scholar
Vernet, R., (2002). Climate during the late Holocene in the Sahara and the Sahel. evolution and consequences on human settlement. Hassan, F.A. Droughts, Food and Culture. Kluwer Academic, New York. 4163.Google Scholar
Verschuren, D., Laird, K.R., and Cumming, B.F., (2000). Rainfall and drought in equatorial East Africa during the past 1100 years. Nature 403, 410414.CrossRefGoogle Scholar