Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:02:05.180Z Has data issue: false hasContentIssue false

High-resolution insight into the Holocene environmental history of the Burullus Lagoon in northern Nile delta, Egypt

Published online by Cambridge University Press:  18 November 2021

Leszek Marks*
Affiliation:
Polish Geological Institute, National Research Institute, Warsaw, Poland University of Warsaw, Faculty of Geology, Warsaw, Poland
Fabian Welc
Affiliation:
Cardinal Stefan Wyszyński University, Institute of Archaeology, Warsaw, Poland
Barbara Woronko
Affiliation:
University of Warsaw, Faculty of Geology, Warsaw, Poland
Jarmilla Krzymińska
Affiliation:
Polish Geological Institute, National Research Institute, Warsaw, Poland
Anna Rogóż-Matyszczak
Affiliation:
Pope John Paul 2nd State Higher School, Faculty of Technical Sciences, Biała Podlaska, Poland
Marcin Szymanek
Affiliation:
University of Warsaw, Faculty of Geology, Warsaw, Poland
Jakub Holuša
Affiliation:
Masaryk University, Faculty of Science, Department of Geography, Brno, Czech Republic
Jerzy Nitychoruk
Affiliation:
Pope John Paul 2nd State Higher School, Faculty of Technical Sciences, Biała Podlaska, Poland
Zhongyuan Chen
Affiliation:
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Alaa Salem
Affiliation:
Kafrelsheikh University, Faculty of Science, Kafrelsheikh, Egypt
Abdelfattah Zalat
Affiliation:
Tanta University, Faculty of Science, Tanta, Egypt
*
*Corresponding Author email address: [email protected]

Abstract

The modern Nile delta developed in the Middle and Late Holocene, and at its most northern-central point is situated at the Burullus Lagoon, which is environmentally diverse, including salt marshes, mudflats, and sand plains, and separated from a sea by a sand barrier overtopped with high sand dunes. The lagoon has been fed since the Middle Holocene by the Sebennitic branch of the Nile and marine intrusions through the Bughaz inlet. A sediment core (BO-1) was collected at the northeastern shore of the lagoon and sampled at centennial scale resolution in order to reconstruct the development of the lagoon. The results show that an initial and limited lagoon had developed at the end of the Early Holocene, but after a dry period ca. 7.2 cal ka BP it has been progressively transformed into a marshy area, with occasional inflows of sea water. Lower water level and higher salinity of the Burullus Lagoon at 6.0–5.5 and 4.8–4.2 cal ka BP reflected droughts in the Nile catchment. Thereafter, the river reactivated in the Burullus Lagoon area, and since 2.8 cal ka BP was accompanied by occasional inflows of sea water. Since ca. 0.8 cal ka BP, increased fluvial activity occurred in this part of the Nile delta, which terminated after construction of the Aswan dams in the twentieth century.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andres, W., Wunderlich, J., 1986. Untersuchungen zur Palägeographie des westlichen Nildeltas im Holozän. Marburger Geographische Schriften 100, 117131.Google Scholar
Arbouille, D., Stanley, D.J., 1991. Late Quaternary evolution of the Burullus Lagoon region, north-central Nile delta, Egypt. Marine Geology 99, 4566.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., 2011. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene 21, 163171.CrossRefGoogle Scholar
Bernhardt, C.E., Horton, B.P., Stanley, J.D., 2012. Nile delta vegetation response to Holocene climate variability. Geology 40, 615618.CrossRefGoogle Scholar
Bini, M., Zanchetta, G., Persoiu, A., Cartier, R., Català, A., Cacho, I., Dean, J.R., et al. , 2019. The 4.2 ka BP event in the Mediterranean region: an overview. Climate of the Past 15, 555577.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Blaauw, M., Van Geel, B., Kristen, I., Plessen, B., Lyaruu, A., Engstrom, D.R., Van der Plicht, J., Verschuren, D., 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quaternary Science Reviews 30, 30433059.CrossRefGoogle Scholar
Blair, C. L., Geirsdóttir, Á., Miller, G. H., 2015. A high-resolution multi-proxy lake record of Holocene environmental change in southern Iceland. Journal of Quaternary Science 30, 281292.CrossRefGoogle Scholar
Blanchet, C.L., Contoux, C., Leduc, G., 2015. Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison. Quaternary Science Reviews 130, 222230.CrossRefGoogle Scholar
Blodget, H.W., Taylor, P.T., Roark, J.H. 1991. Shoreline changes along the Rosetta-Nile Promontory: monitoring with satellite observations. Marine Geology 99, 6777.CrossRefGoogle Scholar
Bloemdal, J., deMenocal, P., 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole—core magnetic susceptibility measurements. Nature 342, 897900.CrossRefGoogle Scholar
Boomer, I., Horne, D.J., Slipper, I.J., 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park, L.E., Smith, A.J. (Eds), Bridging the Gap: Trends in the Ostracod Biological and Geological Sciences. The Paleontological Society Papers 9, 153–179.Google Scholar
Borówka, R.K., Tomkowiak, J., Okupny, D., Forysiak, J., 2015. Skład chemiczny osadów bagiennych z doliny Rawki (torfowisko Kopanicha, Równina Łowicko-Błońska). Folia Quaternaria 83, 2544.Google Scholar
Broecker, W.S., Peng, T.H., 1982. Tracers in the Sea. Eldigio Press, New York.Google Scholar
Brown, D.S., 1994. Freshwater Snails of Africa and Their Medical Importance. Taylor & Francis, London.CrossRefGoogle Scholar
Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., Egli, M., 2020. Relating the spatial variability of chemical weathering and erosion togeological and topographical zones. Geomorphology 363, 107235.CrossRefGoogle Scholar
Dumont, H.J., El-Shabrawy, G.M., 2007. Lake Borullus of the Nile delta: a short history and an uncertain future Borullus. Ambio 36, 677682.CrossRefGoogle Scholar
Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and palaeosols, with implications for palaeo-weathering conditions and provenance. Geology 23, 921924.2.3.CO;2>CrossRefGoogle Scholar
Flaux, C., Morhange, C., Marriner, N., Rouchy, J.-M., 2011. Bilan hydrologique et biosédimentaire de la lagune du Maryût (delta du Nil, Egypte) entre 8 000 et 3 200 ans cal. B.P. Géomorphologie: Relief, Processus, Environnement 3, 261278.CrossRefGoogle Scholar
Flaux, C., El-Assal, M., Marriner, N., Morhange, C., Rouchy, J.M., Soulié-Märsche, I., Torab, M., 2012. Environmental changes in the Maryut Lagoon (northwestern Nile delta) during the last ~2000 years. Journal of Archaeological Science 39, 34933504.CrossRefGoogle Scholar
Flaux, C., Claude, C., Marriner, N., Morhange, C., 2013. A 7500 years strontium isotope record from the northwestern Nile delta (Maryut Lagoon, Egypt). Quaternary Science Reviews 78, 2233.CrossRefGoogle Scholar
Folk, R.L., 1978. Angularity and silica coatings of Simpson Desert sand grains Northern Territory. Journal of Sedimentary Petrology 52, 93101.Google Scholar
Garzanti, E., Andò, S., Padoan, M., Vezzoli, G., El Kammar, A., 2015. The modern Nile sediment system: processes and products. Quaternary Science Reviews 130, 956.CrossRefGoogle Scholar
Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.CrossRefGoogle Scholar
Ginau, A., Schiestl, R., Wunderlich, J., 2019. Integrative geoarchaeological research on settlement patterns in the dynamic landscape of the northwestern Nile delta. Quaternary International 511, 5167.CrossRefGoogle Scholar
Goslar, T., Czernik, J., Goslar, E., 2004. Low-energy 14C AMS in Poznań Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224, 511.CrossRefGoogle Scholar
Götting, K.-J., 2008 Meeres-Gehäseschnecken Deutschlands. Bestimmungsschlüssel, Lebensweise, Verbreitung. Die Tierwelt Deutschlands 80. ConchBooks, Hackenheim, Germany.Google Scholar
Goudie, A., Watson, A., 1981. The shape of desert sand dune grains. Journal of Arid Environments 4, 185190.CrossRefGoogle Scholar
Goudie, A.S., Warren, A., Jones, D.K.C., Cooke, R.U., 1987. The character and possible origins of the aeolian sediments of the Wahiba Sand Sea. Geographical Journal 153, 231256.CrossRefGoogle Scholar
Guo, B., Zhu, R.,X., Roberts, A.P., Florindo, F., 2001. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol sequences. Geophysical Research Letters 28, 42594262.CrossRefGoogle Scholar
Hamza, W., 2005. The Nile Estuary Handbook of Environmental Chemistry. Springer, Heidelberg.Google Scholar
Harnois, L., 1988. The CIW index: a new Chemical Index of Weathering. Sedimentary Geology 55, 319322.CrossRefGoogle Scholar
Hennekam, R., Donders, T.H., Zwiep, K., de Lange, G.J., 2015. Integral view of Holocene precipitation and vegetation changes in the Nile catchment area as inferred from its delta sediments. Quaternary Science Reviews 130, 189199.CrossRefGoogle Scholar
Jalut, G., Amat, A.E., Bonnet, L., Gauquelin, T., Fontugne, M., 2000. Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 255290.CrossRefGoogle Scholar
Jiang, J., Salem, A., Lai, X., Zhang, W., Marks, L., Welc, F., Xu, L., Chen, J., Chen, Z., Sun, Q., 2016. Sediment magnetism of Faiyum basin (Egypt) and its implications for the Holocene environment change. Journal of Lake Sciences 28, 13911403.Google Scholar
Johnsson, M.J., 1993. The system controlling the composition of clastic sediments. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper 284, pp. 1–19.CrossRefGoogle Scholar
Kaniewski, D., Marriner, N., Cheddadi, R., Guiot, J., Van Campo, E., 2018. The 4.2 ka BP event in the Levant. Climate of the Past 14, 15291542.CrossRefGoogle Scholar
Keatings, K., Holmes, J., Flower, R., Horne, D., Whittaker, J.E., Abu-Zied, R.H., 2010. Ostracods and the Holocene palaeolimnology of Lake Qarun, with special reference to past human-environment interactions in the Faiyum (Egypt). Hydrobiologia 654, 155176.CrossRefGoogle Scholar
Keyser, D., Aladin, N., 2004. Noding in Cyprideis torosa and its causes. Studia Quaternaria 21, 1924.Google Scholar
Kholeif, S.E.A., 2010. Holocene paleoenvironmental change in inner continental shelf sediments, southeastern Mediterranean, Egypt. Journal of African Earth Sciences 57, 143153.CrossRefGoogle Scholar
Kindermann, K., Bubenzer, O., Nussbaum, S., Riemer, H., Darius, F., Pöllath, N., Smettan, U., 2006. Palaeoenvironment and Holocene land use of Djara, Western Desert of Egypt. Quaternary Science Reviews 25, 16191637.CrossRefGoogle Scholar
Kotlia, B.S., Joshi, M.L., 2013. Late Holocene climatic changes in Garhwal Himalaya. Current Science 104, 911919.Google Scholar
Krinsley, D.H., Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge, UK, 91 pp.Google Scholar
Křížek, M., Krbcová, K., Mida, P., Hanáček, M., 2017. Micromorphological changes as an indicator of the transition from glacial to glaciofluvial quartz grains: evidence from Svalbard. Sedimentary Geology 358, 3543.CrossRefGoogle Scholar
Krom, M.D., Stanley, J.D., Cliff, R.A., Woodward, J.C., 2002. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geology 30, 7174.2.0.CO;2>CrossRefGoogle Scholar
Li, C., Yang, S.Y., 2010. Is chemical index of alteration a reliable proxy for chemical weathering in global drainage basins? American Journal of Science 310, 111127.CrossRefGoogle Scholar
Ložek, V., 1986. Mollusca analysis. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons, Chichester, UK, pp. 729740.Google Scholar
Mahaney, W.C., 2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press, Oxford, UK, 237 pp.Google Scholar
Malick, B.M.L, Ishiga, H., 2016. Geochemical classification and determination of maturity source weathering in beach sands of eastern San’ in Coast, Tango Peninsula, and Wakasa Bay, Japan. Earth Science Research 5, 4456.CrossRefGoogle Scholar
Marriner, N., Flaux, C., Kaniewski, D., Morhange, C., Leduc, G., Moron, V., Chen, Z., Gasse, F., Empereur, J.-Y., Stanley, J.-D., 2012a. ITCZ and ENSO-like pacing of Nile delta hydro-geomorphology during the Holocene. Quaternary Science Reviews 45, 7384.CrossRefGoogle Scholar
Marriner, N., Flaux, C., Morhange, C., Kaniewski, D., 2012b. Nile delta's sinking past: quantifiable links with Holocene compaction and climate-driven changes in sediment supply? Geology Data Repository 2012314. https://doi.org/10.1130/G33209.1.CrossRefGoogle Scholar
Marriner, N., Flaux, C., Morhange, C., Stanley, J.D., 2013. Tracking Nile delta vulnerability to Holocene change. PLoS One 87, E69195. https://doi.org/10.1371/journal.pone.0069195.CrossRefGoogle Scholar
Marshall, H.M., Lamb, H.F., Huws, D., Davies, S.J., Bates, R., Bloemendal, J., Boyle, J., Leng, M.J., Umer, M., Bryant, C., 2011. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Global and Planetary Change 78, 147161.CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., et al. , 2004. Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
McLennan, S.M., 1993. Weathering and global denudation. Journal of Geology 101, 295303.CrossRefGoogle Scholar
Muhs, D.R., Roskin, J., Tsoar, H., Skipp, G., Budahn, J., Sneh, A., Porat, N., Stanley, J.D., Katra, I., Blumberg, D.G., 2013. Origin of the Sinai–Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69, 2848.CrossRefGoogle Scholar
Mycielska-Dowgiałło, E., Woronko, B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziaren kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny 46, 12751281.Google Scholar
Neale, J., 1988. Ostracods and paleosalinity reconstruction. In: De Deckker, P., Colin, J.P., Peypouquet, J.P. (Eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, pp. 125155.Google Scholar
Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715717.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129147.CrossRefGoogle Scholar
Pachur, H.-J., Kröpelin, S., 1987. Wadi Howar: paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science 237, 298300.CrossRefGoogle ScholarPubMed
Peglar, S.M., Birks, H.H., Birks, H.J.B., Appleby, P.G., Faithi, A.A., Flower, R.J., Kraïem, M.M., Patrick, S.T., Ramdani, M., 2001 Terrestrial pollen record of recent land-use changes around nine North African lakes in the CASSARINA Project. Aquatic Ecology 35, 431448.CrossRefGoogle Scholar
Pennington, B.T., Sturt, F., Wilson, P., Rowland, J., Brown, A.G. 2017. The fluvial evolution of the Holocene Nile delta. Quaternary Science Reviews 170, 212231.CrossRefGoogle Scholar
Pennington, B.T., Hamdan, M.A., Pears, B.R., Sameh, H.I., 2019. Aridification of the Egyptian Sahara 5000–4000 cal BP revealed from x-ray fluorescence analysis of Nile delta sediments at Kom al-Ahmer/Kom Wasit. Quaternary International 514, 108118.CrossRefGoogle Scholar
Plaziat, J.C., 1993. Modern and fossil potamids (Gastropoda) in saline lakes. Journal of Paleolimnology 8, 163169.CrossRefGoogle Scholar
Reichelt, G., 1961. Über Schotterformen und Rundungsgradanalyse als Feldmethode. Petermanns Geographische Mitteilungen 105, 1524.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Saad, M.A.H., 1976. Core sediments from Lake Brollus (Bahra el Burullus), Egypt. Acta Hydrochimica et Hydrobiologica 4, 469478.CrossRefGoogle Scholar
Saad, M.A.H., 1979–1980. Studies of the bottom deposits of the Lake Brollus, a Delta Egyptian Lake. Cahiers ORSTOM, série Hydrobiologie 13, 181185.Google Scholar
Said, R., 1981. The Geological Evolution of the River Nile. Springer Verlag, New York.CrossRefGoogle Scholar
Sandgren, P., Snowball, I., 2001. Application of mineral magnetic techniques to paleolimnology. In: Last, W., Smol, J., (Eds.), Tracking Environmental Change Using Lake Sediments 2. Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 217237.Google Scholar
Sattmann, H., Kinzelbah, R., 1988. Notes on inland water molluscs from Egypt (Mollusca: Gastropoda, Bivalvia). Zoology in the Middle East 2, 7278.CrossRefGoogle Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A., Luz, B., 2001. Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 157176.CrossRefGoogle Scholar
Selvaraj, K., Chen, C-T.A., 2006. Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. Journal of Geology 114, 101116.CrossRefGoogle Scholar
Sestini, G., 1989. Nile delta: a review of depositional environments and geological history. Geological Society of London, Special Publications 41, 99127.CrossRefGoogle Scholar
Shaltout, K.H., Al-Sodany, Y.M., 2008. Vegetation analysis of Burullus Wetland: a RAMSAR site in Egypt. Wetlands Ecology and Management 16, 421439.CrossRefGoogle Scholar
Shanahan, T.M., McKay, N.P., Hughen, K.A., Overpeck, J.T., Otto-Bliesner, B., Heil, C.W., King, J., Scholz, C.A., Peck, J., 2015. The time-transgressive termination of the African Humid Period. Nature Geoscience 8, 140144.CrossRefGoogle Scholar
Stanley, D.J., Warne, A.G., 1992. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435438.CrossRefGoogle Scholar
Stanley, D.J., Warne, A.G., 1993. Nile delta: recent geological evolution and human impact. Science 260, 628634.CrossRefGoogle ScholarPubMed
Stanley, DJ., Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265, 228231.CrossRefGoogle ScholarPubMed
Stanley, D.J., Warne, A.G., 1998. Nile Delta in its destruction phase. Journal of Coastal Research 14, 794825.Google Scholar
Stanley, D.J., McRea, J.E., Waldron, J.C., 1996. Nile delta drill core and sample database for 1985–1994: Mediterranean Basin (MEDIBA) Program. Smithsonian Contributions to the Marine Sciences 37, 1428.CrossRefGoogle Scholar
Stanley, D.J., Krom, M.D., Cliff, R.A., Woodward, J.C., 2003. Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence. Geoarcheology 18, 395402.CrossRefGoogle Scholar
Stanley, D.J., Jorstad, T.F., Bernasconi, M.P., Stanford, D., Jodry, M., 2008. Predynastic human presence discovered by core drilling at the northern Nile delta coast, Egypt. Geology 36, 599602.CrossRefGoogle Scholar
Sun, Q., Liu, Y., Salem, A., Marks, L., Welc, F., Ma, F., Zhang, W., Chen, J., Jiang, J., Chen, Z. 2019. Climate-induced discharge variations of the Nile during the Holocene: evidence from the sediment provenance of Faiyum Basin, north Egypt. Global and Planetary Change 172, 200210.CrossRefGoogle Scholar
Taraschewski, H., Paperna, I., 1981. Distribution of the snail Pirenella conica in Sinai and Israel and its infection by Heterophydae and other trematodes. Marine Ecology—Progress Series 5, 193205.CrossRefGoogle Scholar
Verosub, K.L., Roberts, A.P., 1995. Environmental magnetism: past, present and future. Journal of Geophysical Research 100, 21752192.CrossRefGoogle Scholar
Vos, K., Vandenberghe, N., Elsen, J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): from sample preparation to environmental interpretation. Earth Science Review 128, 93104.CrossRefGoogle Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 31093123.CrossRefGoogle Scholar
Wanner, H., Mercolli, L., Grosjean, M., Ritz, S.P., 2015. Holocene climate variability and change; a data-based review. Journal of the Geological Society 172, 254263.CrossRefGoogle Scholar
Welc, F., Marks, L., 2014. Climate change at the end of the Old Kingdom in Egypt around 4200 BP: New geoarcheological evidence. Quaternary International 324, 124133,CrossRefGoogle Scholar
Welter-Schultes, F., 2012. European Non-Marine Molluscs, A Guide for Species Identification. Planet Poster Editions, Goettingen, Germany.Google Scholar
Whitlock, C., Dean, W., Rosenbaum, J., Stevens, L., Fritz, S., Bracht, B., Power, M., 2008. A 2650-year-long record of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy data. Quaternary International 188, 126138.CrossRefGoogle Scholar
Williams, M.A.J., 2010. Late Pleistocene and Holocene environments in the Nile basin. Global and Planetary Change 69, 115.CrossRefGoogle Scholar
Wilson, P., 2011. Settlement connections in the Canopic region. In: Robinson, D., Wilson, A. (Eds.), Alexandria and the North-Western Delta. Oxford Centre for Maritime Archaeology, Monograph 5, 111126.Google Scholar
Wilson, P., Grigoropoulos, D., 2009. The West Delta Regional Survey, Beheira and Kafr el-Sheikh Provinces. Egypt Exploration Society, London.Google Scholar
Woodward, J.C., Macklin, M.G., Krom, M.D., Williams, M.A.J., 2007. The Nile: evolution, Quaternary river environments and material fluxes. In: Gupta, A. (Ed.), Large Rivers: Geomorphology and Management. John Wiley & Sons, Ltd., Chichester, UK, pp. 261291.CrossRefGoogle Scholar
Woodward, J., Macklin, M., Fielding, L., Miller, I., Spencer, N., Welsby, D., Williams, M., 2015. Shifting sediment sources in the world's longest river: a strontium isotope record for the Holocene Nile. Quaternary Science Reviews 130, 124140.CrossRefGoogle Scholar
Woronko, B., 2012. Late-Holocene dust accumulation within the ancient town of Marea (coastal zone of the South Mediterranean Sea, N Egypt). Quaternary International 266, 413.CrossRefGoogle Scholar
Woronko, B., Dłużewski, M., Woronko, D., 2017. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (Western Desert, S Egypt). Aeolian Research 29, 4254.CrossRefGoogle Scholar
Wright, J., Smith, B., Whalley, B., 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23, 1534.CrossRefGoogle Scholar
Wunderlich, J., 1988. Investigations on the development of the Western Nile delta in Holocene. In: Van den Brink, E.C.M. (Ed.), The Archaeology of the Nile Delta, Egypt: Problems and Priorities. Netherlands Foundation for Archaeological Research in Egypt, Amsterdam, pp. 251257.Google Scholar
Wunderlich, J., 1989. Untersuchungen zur Entwicklung des westlichen Nildeltas im Holozän. Marburger Geographische Schriften 114, 164172.Google Scholar
Wunderlich, J., 1993. The natural conditions for pre- and early Dynastic settlement in the western Nile delta around Tell el-Farain, Buto. In: Krzyżaniak, L., Kobusiewicz, M., Alexander, J., (Eds.), Environmental Change and Human Culture in the Nile Basin and Northern Africa Until the Second Millennium BC. Poznań Archaeological Museum, Poznań, Poland, pp. 259266.Google Scholar
Yang, S.Y., Li, C.X., Yang, D.Y., Li, X.S., 2004. Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications. Quaternary International 117, 2734.CrossRefGoogle Scholar
Zaki, R., 2007. Pleistocene evolution of the Nile Valley in northern Upper Egypt. Quaternary Science Reviews 26, 28832896.CrossRefGoogle Scholar
Zalat, A.A., Servant Vildary, S., 2005. Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes. Journal of Paleolimnology 34, 159174.CrossRefGoogle Scholar
Zhang, Z., Yang, X., Shen, Ji., Li, S., Zhu, Y., Wu, R., 2001. Climatic variations recorded by the sediments from Erhai Lake, Yunnan Province, southwest China during the past 8000 a. Chinese Science Bulletin 46, (Suppl.), 8082.CrossRefGoogle Scholar
Zhao, X., Liu, Y., Salem, A., Marks, L., Welc, F., Sun, J., Jiang, J., Chen, J., Chen, Z., 2017. Migration of the Intertropical Convergence Zone in North Africa during the Holocene: evidence from variations in quartz grain roundness in the lower Nile valley, Egypt. Quaternary International 449, 2228.CrossRefGoogle Scholar
Zhao, X., Thomas, I., Salem, A., Alassald, S.E., Liu, Y., Sun, Q., Chen, J., Ma, F., Finlayson, B., Chen, Z., 2020. Holocene climate change and its influence on early agriculture in the Nile delta, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 547, 109702. https://doi.org/10.1016/j.palaeo.2020.109702.CrossRefGoogle Scholar
Supplementary material: PDF

Marks et al. supplementary material

Appendix 1

Download Marks et al. supplementary material(PDF)
PDF 2.2 MB