Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T01:54:48.624Z Has data issue: false hasContentIssue false

Hemipelagic Sediment Accumulation Rates in the South China Sea Related to Late Quaternary Sea-Level Changes

Published online by Cambridge University Press:  20 January 2017

Joachim Schönfeld
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148 Kiel, Germany
Hermann-Rudolf Kudrass
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany

Abstract

Sediments of 13 piston cores from opposite continental slopes of the South China Sea, off southern China and Sabah (northern Borneo), were analyzed by sedimentological methods and dated by oxygen isotope stratigraphy. Sediments mostly consist of hemipelagic clay with 20% carbonate off Sabah and 40% off China. We calculated terrigenous and carbonate accumulation rates for up to 11 time-slices from the Holocene to oxygen-isotope stage 6. Terrigenous accumulation rates generally increase with water depth and reach a maximum at the middle slope off Sabah and at the lower continental slope off China. During glacial and interglacial times this distribution pattern did not markedly change, despite an increase of accumulation rates for glacial periods by a factor of 2 to 5 compared to interglacial periods. Rates are negatively correlated with positions of sea level, which controls the partition of fluviatile terrigenous material for deposition on shelf, slope, and abyssal plain. Carbonate accumulation rates are higher off China by a factor of 2 compared to Sabah, probably indicating higher calcareous plankton productivity.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M. Faure, H. Faure-Denard, L. McGlade, J. M., and Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711714.CrossRefGoogle Scholar
Aloisi, J. C. Cambon, J. P. Carbonne, J. Cauwet, G. Millot, C Monaco, A., and Pauc, H. (1982). Origine et r61e du néphéloide profond dans le transfert des particles au milieu marin. Application au Golfe du Lion. Oceanologica Acta 5, 481491.Google Scholar
Bard, E. Arnold, M. Maurice, P. Duprat, J. Moyes, J., and Duplessy, J.-C. (1987). Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328, 791794.CrossRefGoogle Scholar
Bard, E. Hamelin, B. Fairbanks, R. G., and Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405409.CrossRefGoogle Scholar
Bein, A., and Fütterer, D. (1977). Texture and composition of continental shelf to rise sediments off the northwestern coast of Africa: An indication for downslope transportation. “Meteor” Forschungs-Ergebnisse. C, 27, 4674.Google Scholar
Berger, W. (1977). Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera. Nature 269, 301303.CrossRefGoogle Scholar
Berger, W. H. (1987). Ocean ventilation during the last 12,000 years: Hypothesis of counterpoint deep water production. Marine Geology 78, 110.CrossRefGoogle Scholar
Boyce, R. E. (1976). Definitions and laboratory techniques of compres-sional sound velocity parameters and wet-water content, wet bulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. Initial Reports DSDP 33, 931958.Google Scholar
Broecker, W. S. Andree, M. Wölfli, W. Oeschger, H. Bonani, G. Kennett, J., and Peteet, O. (1988). The chronology of the Last degla-ciation: Implications to the cause of the Younger Dryas event. Paleoceanography 3(1), 119.CrossRefGoogle Scholar
CLIMAP (1976). The surface of the Ice-Age earth. Science 191, 11311137.CrossRefGoogle Scholar
Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of CO. Geochimica Cos-mochimica Acta 12, 133149.CrossRefGoogle Scholar
Diester-Haass, L. (1976). Quaternary accumulation rates of biogenous and terrigenous components on the east Atlantic continental slope off NW Africa. Marine Geology 21, 124.CrossRefGoogle Scholar
Duplessy, J.-C Arnold, M. Maurice, P. Bard, E. Duprat, J., and Moyes, J. (1986). Direct dating of the oxygen-isotope record of the Last deglaciation by 14C accelerator mass spectrometry. Nature 320, 350352.CrossRefGoogle Scholar
Ehrmann, W., and Thiede, J. (1985). History of Mesozoic and Cenozoic sediment fluxes to the North Atlantic Ocean. Contributions to Sedi-mentology 15, 1109.Google Scholar
Fairbanks, R. G. (1990), The age and origin of the “Younger Dryas climatic event” in Greenland ice cores. Paleoceanography 5(6), 937948.CrossRefGoogle Scholar
Hamilton, W. (1979). “Tectonics of the Indonesian region.” U.S. Geological Survey Professional Papers 1078.CrossRefGoogle Scholar
Hinz, K. Fritsch, J. Kewitsch, P. Popovici, A. Roeser, H., and Wissmann, G. (1987). “Geophysical Investigations in the Celebes Sea and in the Sulu Sea.” Unpublished report. Bundesanstalt für Geowissen-schaften und Rohstoffe, Hannover.Google Scholar
Hinz, K. Fritsch, J. Kempter, E. H. K. Mohammad, A. M. Meyer, J. Mohamed, D. Vosberg, H. Weber, J., and Benavidez, J. (1989). Thrust tectonics along the northwestern continental margin of Sabah/ Borneo. Geologische Rundschau 78(3), 705730.CrossRefGoogle Scholar
Hovan, S. A. Rea, D. K., and Pisias, N. G. (1991). Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sediments. Paleoceanography 6(3), 349370.CrossRefGoogle Scholar
Imbrie, J. Shackleton, N. J. Pisias, N. G. Morley, W. L. Prell, W. L. Martinson, D. G. Hays, J. P. Mclntyre, A., and Mix, A. C. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In “Milankovitch and Climate” (Berger, A. Imbrie, J. Mays, J. Kukla, G., and Saltzman, B., Eds.), pp. 269305. Seidel, Hingham/MA.Google Scholar
Jennerjahn, T. C Liebezeit, G. Kempe, S. Xu, L. Chen, W., and Wong, H. K. (1992). Particle flux in the Northern South China Sea. In “Marine Geology and Geophysics of the South China Sea” (Jin, X. L. Kudrass, H. R., and Pantot, G., Eds.), pp. 228235. China Ocean Press, Hangzhou.Google Scholar
Kudrass, H. R. Erlenkeuser, J. Vollbrecht, R., and Weiss, W. (1991). Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature 348, 406409.CrossRefGoogle Scholar
Kudrass, H. R. Jin, X. L. Beiersdorf, H., and Cepek, P. (1992). Erasion and sedimentation in the Xishah Though at the continental margin of southern China. In “Marine Geology and Geophysics of the South China Sea” (Jin, X. L. Kudrass, H. R., and Pantot, G., Eds.), pp. 137147. China Ocean Press, Hangzhou.Google Scholar
Kuijpers, A. Rispens, F. B., and Burger, A. W. (1984). Late Quaternary sedimentation and sedimentary processes on the Madeira Abyssal Plain, eastern North Atlantic. Medeling Rijks Geologije Dienst 38(2), 91118.Google Scholar
Kuijpers, A., and Duin, E. i. Th. (1986). Boundary current-controlled turbidite deposition: A sedimentation model for the southern Nares abyssal plain, western North Atlantic. Geo-Marine Letters 6, 2128.CrossRefGoogle Scholar
Kutzbach, J. E., and Guetter, P. J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 Years. Journal of Atmosphaeric Sciences 43(16), 17261759.2.0.CO;2>CrossRefGoogle Scholar
Langbein, W. B., and Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. Transactions of the American Geophysical Union 39, 10761084.Google Scholar
Martinson, D. G. Pisias, N. G. Hays, J. O. Imbrie, J. Moore, T. C, and Shackleton, J. (1987). Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000-yr chronos-tratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
Nelson, C. H. (1976). Depositional trends in Astoria deep-sea fan. Marine Geology 20, 129173.CrossRefGoogle Scholar
Nummedal, D. Pilkey, O. H., and Howard, J. D. (1987). Sea-Level fluctuation and coastal evolution. Society of Economy Paleontologists and Mineralogists 41, 267 [Special Publication] Google Scholar
Peterson, L. C, and Prell, W. L. (1985). Carbonate preservation and rates of climatic change: An 800 kyr record from the Indian Ocean. In “The Carbon Cycle and Atmospheric CO2, Natural Variations Archaean to Present,” Geophys. Monogr. Ser. 32, 251269.Google Scholar
Pinet, P., and Souriau, M. (1988). Continental erosion and large-scale relief. Tectonics 7, 563582.CrossRefGoogle Scholar
Pisias, N. G. Martinson, D. G. Moore, T. C Shackleton, N. J. Prell, W. Hays, J., and Boden, G. (1984). High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geology S6, 119136.CrossRefGoogle Scholar
Prell, W. L. Imbrie, J. Martinson, D. G. r Moriey, J. J. Pisias, N. G. Shackleton, N. J., and Streeter, H. F. (1986). Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary. Pa-leoceanography 1(2), 137162.Google Scholar
Ramage, C. S. (1971). “Monsoon Meteorology.” Academic Press, San Diego.Google Scholar
Rea, D. K. Pisias, N. G., and Newberry, T. (1991). Late Pleistocene Paleoclimatology of the Central Equatorial Pacific: Flux patterns of biogenic sediments. Paleoceanography 6(2), 227244.CrossRefGoogle Scholar
Rottmann, M. L. (1979). Dissolution of planktonic foraminifera and pteropods in South China Sea sediments. Journal of Foraminiferal Research 9(1), 4149.CrossRefGoogle Scholar
Saito, Y. (1991). Sequence stratigraphy on the shelf and upper slope in response to the latest Pleistocene-Holocene sea-level changes off Sendai, northeast Japan. Special Publication of the International Association of Sedimentologists 12, 133150.Google Scholar
Sarnthein, M., and Tiedemann, R. (1990). Younger Dryas-style cooling events at glacial terminations I-VI at ODP Site 658: Associated benthic δ13C anomalies constrain meltwater hypothesis. Paleoceanography 5(6), 10411055.CrossRefGoogle Scholar
Seibold, E., and Berger, W. H. (1982). “The sea floor. An introduction to Marine Geology.” Springer, Berlin.Google Scholar
Shackleton, N. J. (1987). Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183190.CrossRefGoogle Scholar
Shaw, P.-T. (1991). The seasonal variation of the intrusion of the Philippine Sea Water into the South China Sea. Journal of Geophysical Research 96(C1), 821827.CrossRefGoogle Scholar
Soh, W. Tokuyama, H. Fujoika, K. Kato, S., and Taira, A. (1990). Morphology and development of a deep-sea meandering canyon (Boso Canyon) on an active plate margin, Sagami Trough, Japan. Marine Geology 91, 227241.CrossRefGoogle Scholar
Taylor, B., and Hayes, D. E. (1980). The Tectonic Evolution of the South China Sea Basin. In “The Tectonics and Geological Evolution of Southeast Asian Seas and Islands” (Hayes, D. E., Ed.), American Geophysical Union, Geophysical Monograph 23, 89104.Google Scholar
Thtede, J. Suess, E., and Müller, P. J. (1982). Late Quaternary fluxes of major sediment components to the sea floor at the Northwest African Continental Slope. In “Geology of the Northwest African Continental Margin” (Rad, U. v. Hinz, K. Sarnthein, M., and Seibold, E., Eds.), pp. 605631. Springer, Berlin.CrossRefGoogle Scholar
Thompson, P. R. , A. W. H. Duplessy, J.-C. and Shackleton, N. J. (1979). Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature 280, 554558.CrossRefGoogle Scholar
Thunell, R. C Miao, Q. Calvert, S. E., and Pedersen, T. F. (1992). Glacial-holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2. Paleoceanography 7(2), 143162.CrossRefGoogle Scholar
Vail, P. R. Mitchum, R. M. Jr. Todd, R. G. Widmíer, J. M. Thompson, S. Sangree, J. P. Bubb, J. N., and Hatlelid, W. G. (1977). Seismic stratigraphy and global changes of sea level, parts 1–6. In “Seismic Stratigraphy—Applications to Hydrocarbon Research” (Payton, C. E., Eds.), Memoir of the American Association of Petroleum Geologists 26, 49133.Google Scholar
Van Andel, T. H. Heath, G. R., and Moore, T. C. (1975). Cenozoic rates of deposition. In “Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean.” Geological Society of America, Memoir 143, 4972.Google Scholar
Vollbrecht, R., and Kudrass, H. R. (1990). Geological results of a pre-site survey for ODP drill sites in the SE Sulu sea basin. Proceedings of the Ocean Drilling Program, Initial Reports 124, 105111.Google Scholar
Wang, L., and Wang, P. (1990). Late Quaternary paleoceanography of the south china sea: Glacial-interglacial contrasts in an enclosed basin. Paleoceanography 5(1), 7790.CrossRefGoogle Scholar
Winn, K. Zheng, L. F. Stoffers, P., and Erlenkeuser, H. (1992). Stable oxygen/carbon isotopes and paleoproductivity in the South China Sea during the past 110,000 years. In “Marine Geology and Geophysics of the South China Sea” (Jin, X. L. Kudrass, H. R., and Pantot, G., Eds.), pp. 154166. China Ocean Press, Hangzhou.Google Scholar
Wu, G. Yasuda, M. K., and Berger, W. H. (1991). Late Pleistocene carbonate stratigraphy on Ontong-Java plateau in the western equa-torial Pacific. Marine Geology 99, 135150.CrossRefGoogle Scholar
Wyrtki, K. (1961). “Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959–1961.” NAGA Report, Vol. 2, University of California, Scripps Institution of Oceanography, La Jolla, CA.Google Scholar
Yoshikawa, T. (1987). “Inventory of Quaternary Shorelines: Pacific and Indian Ocean Region.” NODAI Research Institute, Tokyo University of Agriculture, Tokyo.Google Scholar