Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T01:30:50.126Z Has data issue: false hasContentIssue false

Heightened sensitivity of a poorly buffered high arctic lake to late-Holocene climatic change

Published online by Cambridge University Press:  20 January 2017

Neal Michelutti*
Affiliation:
Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6 Department of Geology, University of Toronto, Toronto, Ontario, Canada M5S 3B1
Marianne S.V. Douglas
Affiliation:
Department of Geology, University of Toronto, Toronto, Ontario, Canada M5S 3B1
Alexander P. Wolfe
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
John P. Smol
Affiliation:
Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
*
*Corresponding author. Fax: +1 416 978 3938. E-mail address:[email protected] (N. Michelutti).

Abstract

A diatom-based paleolimnological investigation was conducted on late Holocene sediments from a poorly buffered lake, informally named “Rock Basin Lake”, on Ellesmere Island, Arctic Canada. The fossil diatom record is unlike any other obtained thus far from high arctic regions, exhibiting dynamic assemblage shifts over the entire ∼3300 yr sedimentary record. Multiple proxies (i.e., diatoms, pH reconstructions, biogenic silica, C/N ratios, total organic carbon) appear to sensitively track rapid limnological changes, which are associated with distinct climate intervals as inferred from other regional proxy records. The highly responsive nature of the diatom assemblages in Rock Basin Lake, relative to those recorded from nearby alkaline sites, appears to be related to this lake's limited ability to buffer changes in pH. The dynamic species responses suggest that the diatoms in Rock Basin Lake are faithfully tracking climatic changes, and that low-alkalinity lakes may provide the most sensitive diatom-based paleolimnological records from high arctic regions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniades, D., Douglas, M.S.V., Smol, J.P., (2005). Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. Journal of Paleolimnology 33, 349360.Google Scholar
Birks, H.J.B., (1998). Numerical tools in palaeolimnology–Progress, potentialities, and problems. Journal of Paleolimnology 20, 307322.Google Scholar
Birks, H.J.B., Jones, V.J., Rose, N.L., (2004a). Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments–An introduction. Journal of Paleolimnology 31, 403410.Google Scholar
Birks, H.J.B., Jones, V.J., Rose, N.L., (2004b). Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments–Synthesis and general conclusions. Journal of Paleolimnology 31, 531546.Google Scholar
Blake, W. Jr., (1981). Lake sediment coring along Smith Sound, Ellesmere Island and Greenland. Current Research, Part A, Geological Survey of Canada, Paper 81-1A 191200.Google Scholar
Blake, W. Jr., (1989). Application of AMS dating to the chronology of Holocene glacier fluctuations in the High Arctic, with special reference to the Leffert Glacier, Ellesmere Island, Canada. Radiocarbon 31, 570578.Google Scholar
Blake, W. Jr., Boucherle, M.M., Fredskild, B., Janssens, J.A., Smol, J.P., (1992). The geomorphological setting, glacial history and Holocene development of Kap Inglefield Sø, Inglefield Land, north-west Greenland. Meddelelser om Grønland. Geoscience 27, 142.Google Scholar
Bradley, R.S., (1990). Holocene paleoclimatology of the Queen Elizabeth Islands. Canadian High Arctic. Quaternary Science Reviews 9, 365384.Google Scholar
Bradley, R.S., Briffa, K.R., Cole, J., Hughes, M.K., Osborn, T.J., (2003). The climate of the last millennium. Alverson, K., Bradley, R.S., Pedersen, T.F. Paleoclimate, Global Change and the Future Springer Verlag, Berlin.105141.Google Scholar
Bridgland, J.P., Gillet, J.M., (1983). Vascular plants of the Hayes Sound region, Ellesmere Island, Northwest Territories. Canadian Field-Naturalist 97, 279292.Google Scholar
Briner, J., Michelutti, N., Francis, D.R., Miller, G., Axford, Y., Wooller, M.J., Wolfe, A.P., in press. A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada.. Quaternary Research (accepted July 2005).Google Scholar
Conley, D.J., Schelske, C.L., (2001). Biogenic silica. Smol, J.P., Birk, H.J., Last, W.M. Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands.281293.Google Scholar
Douglas, M.S.V., Smol, J.P., (1999). Freshwater diatoms as indicators of environmental change in the High Arctic. Stoermer, E., Smol, J.P. The Diatoms: Applications for the Environment and Earth Sciences Cambridge University Press, Cambridge, UK.227244.Google Scholar
Douglas, M.S.V., Smol, J.P., Blake, W. Jr., (1994). Marked post-18th century environmental change in high-arctic ecosystems. Science 266, 416419.Google Scholar
Environment Canada, (1996a). Manual of Analytical Methods.. Major Ions and nutrients, vol. 1, . National Laboratory for Environmental Testing, Canadian Center for Inland Waters, Burlington, Ontario, Canada.Google Scholar
Environment Canada, (1996b). Manual of Analytical Methods.. Trace Metals, vol. 2, . National Laboratory for Environmental Testing, Canadian Center for Inland Waters, Burlington, Ontario, Canada.Google Scholar
Fisher, D.A., Koerner, R.M., Reeh, N., (1995). Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. The Holocene 5, 1924.Google Scholar
Glew, J.R., (1988). A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1, 235239.Google Scholar
Glew, J.R., (1989). A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2, 241243.Google Scholar
Grimm, E., (1991). TILIA and TILIA-GRAPH.. Illinois State Museum, Springfield Illinois.Google Scholar
Hyvärinen, H., (1985). Holocene pollen stratigraphy of Baird Inlet, east-central Ellesmere Island, Arctic Canada. Boreas 14, 1932.Google Scholar
Joynt, E.H. III, Wolfe, A.P., (2001). Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences 58, 12221243.Google Scholar
Juggins, S., (2003). C2 user guide. Software for ecological and paleoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Kaufmann, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdóttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Rühland, K., Smol, J.P., Steig, E.J., Wolfe, B.B., (2004). Holocene thermal maximum in the western arctic (0–180°W). Quaternary Science Reviews 23, 529560.Google Scholar
Koerner, R.M., Fisher, D.A., (1990). A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature 343, 630631.Google Scholar
Koinig, K.A., Schmidt, R., Sammaruga-Wögrath, S., Tessadri, R., Psenner, R., (1998). Climate change as the primary cause for pH shifts in a high arctic lake. Water Air and Soil Pollution 104, 167180.Google Scholar
Korhola, A., Weckström, J., (2004). Paleolimnological studies. Pienitz, R., Douglas, M.S.V., Smol, J.P. Arctic Fennoscandia And The Kola Peninsula (Russia). Long-Term Environmental Change in Arctic and Antarctic Lakes Printed in the Netherlands, Springer.381418.Google Scholar
Krammer, K., Lange-Bertalot, H., (1986/1991). Bacillariophyceae. Ettl, H., Gerloff, J., Heynig, D., Mollenhauer, D. Suβwasserflora von Mitteleuropa vol. 2(1–4), 19861991.Gustav Fischer Verlag, Stuttgart/Jena.Google Scholar
Lamoureux, S.F., Bradley, R.S., (1996). A late Holocene varved sediment record of environmental change from northern Ellesmere Island, Canada. Journal of Paleolimnology 16, 239255.Google Scholar
Meyers, P.A., Teranes, J.L., (2001). Sediment organic matter. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands.239269.Google Scholar
Michelutti, N., Holtham, A.J., Douglas, M.S.V., Smol, J.P., (2003a). Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island, and comparisons to other diatom surveys in the Canadian Arctic. Journal of Phycology 39, 465480.CrossRefGoogle Scholar
Michelutti, N., Douglas, M.S.V., Smol, J.P., (2003b). Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global and Planetary Change 38, 257271.Google Scholar
Michelutti, N., Wolfe, A.P., Vinebrooke, R.D., Rivard, B., Briner, J., (2005). Recent primary production increases in arctic lakes. Geophysical Research Letters 32, L19715. 10.1029/2005GL023693.Google Scholar
Patrick, R., Reimer, C.W., (1966). The Diatoms of the United States Exclusive of Alaska and Hawaii. vol. 1, Academy of Natural Sciences of Philadelphia, Monograph No. 13.Google Scholar
Patrick, R., Reimer, C.W., (1975). The Diatoms of the United States Exclusive of Alaska and Hawaii. vol. 2, Academy of Natural Sciences of Philadelphia, Monograph No. 13.Google Scholar
Psenner, R., Schmidt, R., (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356, 781783.Google Scholar
Rühland, K., Priesnitz, A., Smol, J.P., (2003). Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arctic Alpine and Antarctic Research 35, 110123.Google Scholar
Schmidt, R., Kamenik, C., Kaiblinger, C., Hetzel, M., (2004). Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. Journal of Paleolimnology 32, 177196.Google Scholar
Smith, I.R., (2002). Diatom-based Holocene paleoenvironmental records from continental sites on northeastern Ellesmere Island, high Arctic, Canada. Journal of Paleolimnology 27, 928.Google Scholar
Smith, S.V., Bradley, R.S., Abbott, M.B., (2004). A 300year record of environmental change from Lake  Tuborg, Ellesmere Island, Nunavut, Canada. Journal of Paleolimnology 32, 137148.Google Scholar
Smol, J.P., (1983). Paleophycology of a high arctic lake Cape Herschel, Ellesmere Island. Canadian Journal of Botany 61, 21952204.Google Scholar
Smol, J.P., (1988). Paleoclimate proxy data from freshwater arctic diatoms. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 23, 837844.Google Scholar
Smol, J.P., Cumming, B.F., (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36, 9861011.Google Scholar
Smol, J.P., Walker, I.R., Leavitt, P.R., (1991). Paleolimnology and hindcasting climatic trends. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 23, 837844.Google Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.-Á., Hughes, M., Keatley, B., Laing, T., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulneir-Talbot, É., Siitonen, S., Solovieva, N., Weckström, J., (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences 102, 43974402.Google Scholar
Sommaruga-Wögrath, S., Koinig, K., Schmidt, R., Sommaruga, R., Tessadri, R., Psenner, R., (1997). Temperature effects on the acidity of remote alpine lakes. Nature 387, 6467.Google Scholar
Sorvari, S., Korhola, A., Thompson, R., (2002). Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8, 153163.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (2005). Calib 5.0. [WWW program and documentation].Google Scholar
Weidick, A., Oerter, H., Reeh, N., Thomsen, H., Thoring, L., (1990). The recession of inland ice margin during the Holocene climatic optimum in the Jacobshavn Isfjord area of West Greenland. Palaeogeography Palaeoclimatology Palaeoecolecology 82, 389399.Google Scholar
Wilson, S.B., Cumming, B.F., Smol, J.P., (1996). Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake dataset from western North America. Canadian Journal of Fisheries and Aquatic Sciences 53, 15801594.Google Scholar
Wolfe, A.P., (2000). A 6500-Peninsula, Ellesmere Island, Nunavut. Garneau, M., Alt, B.T. Environmental Response to Climate Change in the Canadian High Arctic, Geological Survey of Canada, Bulletin year diatom record from southwestern Fosheim vol. 529, 249256.Google Scholar
Wolfe, A.P., (2002). Climate modulates the acidity of arctic lakes on millennial time scales. Geology 30, 215218.Google Scholar
Wolfe, A.P., (2003). Diatom community responses to late Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. The Holocene 13, 2937.Google Scholar
Yang, F., Turner, L.J., (2000). 210Pb dating of lacustrine sediments from Baird Inlet Lake (Core 227), Province.. National Water Research Institute, Burlington, Ontario. NWRI Report 2000–4.Google Scholar