Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T15:04:39.309Z Has data issue: false hasContentIssue false

Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El'gygytgyn Impact Crater, NE Siberia

Published online by Cambridge University Press:  09 August 2006

Georg Schwamborn*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
Hanno Meyer
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
Grigory Fedorov
Affiliation:
Arctic and Antarctic Research Institute, Bering Street, 199397 St. Petersburg, Russia
Lutz Schirrmeister
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
Hans-W. Hubberten
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
*
Corresponding author. Fax: +49 331 288 2162/37. E-mail address:[email protected] (G. Schwamborn).

Abstract

An accumulation terrace close to the El'gygytgyn Impact Crater in northeastern Siberia contains stratigraphic and periglacial evidence of the paleoenvironmental and paleoclimatic history and permafrost dynamics during late Quaternary time. A succession of paleo active-layer deposits that mirror environmental changes records periods favorable for the establishment and growth of ice-wedge polygonal networks and sediment variations. These two elements of the periglacial landscape serve as complementary paleoenvironmental archives that can be traced back to ∼ 14,000 cal yr BP. The slope sediments and the ground ice contained therein have prominent relative maxima and minima in properties (grain size, total organic content, oxygen isotopes). They document a regional early Holocene thermal maximum at about 9000 cal yr BP, followed by a transition to slightly cooler conditions, and a subsequent transition to slightly warmer conditions after about 4000 cal yr BP. Results from sedimentary analysis resemble morphological and geochemical (oxygen and hydrogen isotopes) results from ice wedge studies, in which successive generations of ice-wedge polygonal networks record warmer winters in late Holocene time. Moreover, peaks of light soluble cation contents and quartz-grain surface textures reveal distinct traces of cryogenic weathering. We propose a conclusive sedimentation model illustrating terrace formation in a permafrost terrain.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, A., Tarasov, P., Schwamborn, G., Ilyashuk, B., Ilyashuk, E., Bobrov, A., Klimanov, V., Rachold, V., and Hubberten, H.-W. Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia. Paleogeography, Paleoclimatology, Paleoecology 209, (2004). 121197.Google Scholar
Annan, A.P., and Davis, J.L. Impulse radar sounding in permafrost. Radio Science 11, (1976). 383394.Google Scholar
Belyi, V.F. Impactogenesis and volcanism of the El'gygytgyn depression. Petrology 6, 1 (1998). 8699.Google Scholar
Brigham-Grette, J. Response to Grosswald and Hughes (2004)—Letter to the Editor. Quaternary Research 62, (2004). 227232.Google Scholar
Burn, C.R., Michel, F.A., and Smith, M.W. Stratigraphic, isotopic and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Canadian Journal of Earth Sciences 23, (1986). 794803.Google Scholar
Callahan, J.E. A nontoxic heavy liquid and inexpensive filters for separation of mineral grains. Journal of Sedimentary Petrology 57, (1987). 765766.Google Scholar
Craig, H. Isotopic variations in meteoric waters. Science 133, (1961). 17021703.Google Scholar
Cremer, H., and Wagner, D. The diatom flora in the ultra-oligotrophic El'gygytgyn Lake, Chukotka. Polar Biology 26, (2003). 105114.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 4 (1964). 436468.Google Scholar
Dereviagin, A.Yu., Chizhov, A.B., Meyer, H., Hubberten, H.-W., and Siegert, Ch. Recent ground ice and its formation on evidence of isotopic analysis. Phillips, M., Springman, S.M., and Arenson, L.U. Proceedings of 8th International Conference on Permafrost, 21–25 July 2003. Zurich, Switzerland. (2003). 58095827.Google Scholar
Elzenga, W., Schwan, J., Baumfalk, Y.A., Vandenberghe, J., and Krook, L. Grain surface characteristics of periglacial aeolian and fluvial sands. Geologie en Mijnbouw 65, (1987). 273286.Google Scholar
Fortier, D., and Allard, M. Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic. Canadian Journal of Earth Sciences 41, (2004). 9971012.Google Scholar
Glushkova, O.Y. Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia. QuaternaryScience Reviews 20, (2001). 405417.Google Scholar
Glushkova, O. Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O. The Expedition El'gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, (2005). 8586.Google Scholar
Glushkova, O.Yu., Smirnov, V.N., in press. Pliocene to Holocene geomorphic evolution and paleogeography of the El'gygytgyn Lake region, NE Russia. Journal of Paleolimnology.Google Scholar
Glushkova, O., Lozkhin, A., Minyuk, P., Stetsenko, T., Belaya, B., Cherepanova, M., Brigham-Grette, J., Layer, P., Stone, D., Nolan, M., Anderson, P., Forman, S., Melles, M., Overduin, P., Zielke, A., Nowaczyk, N., (1999). Paleoclimate Data from El'gygytgyn Lake. Russ. Acad. of Sc. Fareast Branch. North-East Interdisciplinary Research Institute (NEISRI), Magadan., Informational Report (in Russian).Google Scholar
Hasholt, B., and Hagedorn, B. Hydrology and geochemistry of river-borne material in a high arctic drainage system, Zackenberg, Northeast Greenland. Arctic, Antarctic, and Alpine Research 32, 1 (2000). 8494.Google Scholar
Heiser, P.M., and Roush, J.J. Pleistocene glaciations in Chukotka, Russia: moraine mapping using satellite synthetic aperture radar (SAR) imagery. Quaternary Science Reviews 20, (2001). 393404.Google Scholar
Hinkel, K.M., Doolittle, J.A., Bockheim, J.G., Nelson, F.E., Paetzold, R., Kimble, J.M., and Travis, R. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes 12, (2001). 179190.Google Scholar
Hubberten, H.W., Andreev, A., Astakhov, V., Demidov, I., Dowdeswell, J.A., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Jakobsson, M., Kuzmina, S., Larsen, E., Lunkka, J.-P., Lysa, A., Mangerud, J., Möller, P., Saarnisto, M., Schirrmeister, L., Sher, A.V., Siegert, C., Siegert, M.J., and Svendsen, J.I. The periglacial climate and environment in northern Eurasia during the last glaciation. Quaternary Science Reviews 23, 11–13 (2004). 13331357.Google Scholar
Ispolatov, V.O., Tikhomirov, P.L., Heizler, M., and Cherepanova, I.Yu. New 40Ar/39Ar ages of Cretaceous continental volcanics from Central Chukotka: implications for initiation and duration of volcanism within the northern part of the Okhotsk Chukotka volcanic belt (Northeastern Eurasia). The Journal of Geology 112, (2004). 369377.Google Scholar
Jansen, E., and Sjøholm, J. Reconstruction of glaciation of the past 6 Myr from ice-borne deposits in the Norwegian Sea. Nature 349, (1991). 14 Feb Google Scholar
Kaplina, T.N. Permafrost History of North Yakutia During Late Cenozoic Time. (1981). Nauka, Moscow. 153181. (in Russian) Google Scholar
Kaufman, D.S. et al. Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, 5–6 (2004). 529560.Google Scholar
Konishchev, V.N., and Rogov, V.V. Investigations of cryogenic weathering in Europe and Northern Asia. Permafrost and Periglacial Processes 4, (1993). 4964.Google Scholar
Kotler, E., and Burn, C.R. Cryostratigraphy of the Klondike “muck” deposits, west-central Yukon Territory. Canadian Journal of Earth Sciences 37, 6 (2000). 849861.Google Scholar
Krinsley, D.H., and Doornkamp, J.C. Atlas of quartz sand surface textures. (1973). Cambridge Univ. Press, 91 pp.Google Scholar
Kurita, N., Numaguti, A., Sugimoto, A., Ichiyanagi, K., and Yoshida, N. Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia. Journal of Geophysical Research 108, (2003). (http://dx.doi.org/10.1029/2001JD001359)Google Scholar
Kurita, N., Yoshida, N., Inoue, G., and Chayanova, E.A. Modern isotope climatology of Russia: a first assessment. Journal of Geophysical Research 109, (2004). (http://dx.doi.org/10.1029/2003JD003404)Google Scholar
Lachenbruch, A.H. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Special paper - Geological Society of America 70, (1962). (69 pp.) Google Scholar
Layer, P. Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia. Meteoritics and Planetary Science 35, (2000). 591599.Google Scholar
Mackay, J.R. Ice wedge cracks, Garry Island, NWT. Canadian Journal of Earth Sciences 11, (1974). 13661383.Google Scholar
Mackay, J.R., (1983). Oxygen isotope variations in permafrost, Tuktoyaktuk Peninsula area, Northwest Territories. In: Current Research, Part B, Geological Survey of Canada, paper 83-1b, 6774.Google Scholar
Mahaney, W.C. Atlas of Sand Grain Surface Textures and Applications. (2002). Oxford Univ. Press, 237 Google Scholar
Melles, M., Minyuk, P., Brigham-Grette, J., Juschus, O. (eds.), (2005). The Expedition El'gygytgyn Lake 2003 (Siberian Arctic). Reports on Polar and Marine Research 509, 139 p.Google Scholar
Melles, M., Brigham-Grette, J., Glushkova, O., Minyuk, P., Nowaczyk, N.R., Hubberten, H.-W., in press. Sedimentary geochemistry of a pilot core from El'gygytgyn Lake—A sensitive record of climate variability in the East Siberian Arctic during the past three climate cycles. Journal of Paleolimnology.Google Scholar
Merlivat, L., and Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research 84, C8 (1979). 50295033.Google Scholar
Meyer, H., Schönicke, L., Wand, U., Hubberten, H.-W., and Friedrichsen, H. Isotope studies of hydrogen and oxygen in ground ice—Experiences with the equilibration technique. Isotopes in Environmental and Health Studies 36, (2000). 133149.Google Scholar
Meyer, H., Siegert, C., Derevyagin, A., Schirrmeister, L., and Hubberten, H.-W. Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia—Hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13, (2002). 91103.Google Scholar
Meyer, H., Dereviagin, A.Yu., Siegert, C., and Hubberten, H.-W. Paleoclimate studies on Bykovsky Peninsula, North Siberia—Hydrogen and oxygen isotopes in ground ice. Polarforschung 70, (2002). 3751.Google Scholar
Michel, F.A. Isotope Investigations of Permafrost Waters in Northern Canada. (1982). Dept. of Earth Sciences, Univ. of Waterloo, Canada. 227 Google Scholar
Murton, J.B., and French, H. Cryostructures in permafrost, Tuktoyaktuk coastland, western Arctic, Canada. Canadian Journal of Earth Sciences 31, (1994). 737747.Google Scholar
Nolan, M., Brigham-Grette, J., in press. Basic hydrology, limnology, and meteorology of modern El'gygytgyn Lake, Siberia. Journal of Paleolimnology.Google Scholar
Nowaczyk, N.R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O., Nolan, M., Lozkhin, A.V., Stetsenko, T.V., Anderson, P.M., and Forman, S.L. Magnetostratigraphic results from impact crater El'gygytgyn Lake, northeastern Siberia: a 300 kyr long high-resolution terrestrial paleoclimatic record from the Arctic. Geophysical Journal International 150, (2002). 109126.Google Scholar
Ostroumov, V., Hoover, R., Ostroumova, N., Van Vliet-Lanoe, B., Siegert, Ch., and Sorokovikov, V. Redistribution of soluble components during ice segregation in freezing ground. Cold Regions Science and Technology 32, (2001). 175182.Google Scholar
Pisaric, M.F.J., MacDonald, G.M., Velichko, A.A., and Cwynar, L.C. The Lateglacial and Postglacial vegetation history of the northwestern limits of Beringia, based on pollen, stomate and tree stump evidence. Quaternary Science Reviews 20, (2001). 235245.Google Scholar
Popp, S., Diekman, B., Meyer, H., Siegert, Ch., Syromyatnikov, I., and Hubberten, H.W. Palaeoclimate signals as inferred from stable-isotope composition of ground ice in the Verkhoyansk foreland, Central Yakutia. Permafrost and periglacial processes 17, (2006). 119132.Google Scholar
Qui, G., Sheng, W., Huang, C., and Zheng, K. Direction of ion migration during cooling and freezing processes. 5th International Conference on Permafrost, Trondheim, Norway. (1988). 442447. August Google Scholar
Romanovsky, N.N. Regularities in formation of frost-fissures and development of frost-fissure polygons. Biuletyn Periglacjalny 23, (1973). 237277.Google Scholar
Romanovsky, N.N. The scheme of correlation of polygonal wedge structures. Biuletyn Periglacjalny 26, (1976). 287294.Google Scholar
Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A., Kienast, F., Meyer, H., and Bobrov, A. Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quaternary International 89, (2002). 97118.Google Scholar
Schirrmeister, L., Grosse, G., Schwamborn, G., Andreev, A.A., Meyer, H., Kunitsky, V.V., Kuznetsova, T.V., Dorozhkina, M.V., Pavlova, E.Y., Bobrov, A.A., and Oezen, D. Late Quaternary history of the accumulation plain north of the Chekanovsky ridge (Lena Delta, Russia): a mulitdisciplinary approach. Polar Geography 27, 4 (2003). 277319.Google Scholar
Schirrmeister, L. Microfabrics, grain size distributions and grain surface textures in Late Pleistocene basin sediments of Brandenburg (Northern Barnim). Zeitschrift für Geomorphologie. N. F., Supplementband 99, (1995). 7589.Google Scholar
Shilo, N.A., Lozhkin, A.V., Anderson, P.M., Belaya, B.V., Stetsenko, T.V., Glushkova, O.Yu., Brigham-Grette, J., Mellis, M., Minyuk, P.S., Nowaczyk, N., and Forman, S. First continuous pollen record of climate and vegetation changes in the Bering Sea region for the past 300 ka. Doklady Akademii Nauk 376, (2001). 231234.Google Scholar
Souchez, R.A., and Jouzel, J. On the isotopic composition in δD and δ 18O of water and ice during freezing. Journal of Glaciology 30, 106 (1984). 369372.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 3 (1998). 10411083.Google Scholar
Sugimoto, A., Naito, D., Yanagisawa, N., Ichiyanagi, K., Kurita, N., Kubota, J., Kotake, T., Ohata, T., Maximov, T.C., and Fedorov, A.N. Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrological Processes 17, (2003). 10731092.Google Scholar
Vaikmae, R. Oxygen isotopes in permafrost and in ground ice—A new tool for paleoclimate investigations. 5th working meeting isotopes in Nature, Leipzig, September. (1989). 543553.Google Scholar
Vaikmae, R. Oxygen-18 in permafrost ice. Internat. Symposium of the use of isotope techniques in water resources development. (1991). 1426. Vienna, Austria, March Google Scholar
Vandenberghe, J. Timescales, climate and river development. Quaternary Science Reviews 14, (1995). 631638.Google Scholar
Van Hoesen, J.G., and Orndorff, R.L. A comparative SEM study on the micromorphology of glacial and nonglacial clasts with varying age and lithology. Canadian Journal of Earth Sciences 41, (2004). 11231139.Google Scholar
Vasil'chuk, Y.K. Oxygen isotope composition of ground ice. Application to Paleogeocryological Reconstructions. (1992). Moscow, Russia Google Scholar
Vasil'chuk, Y.K., and Vasil'chuk, A.C. Radiocarbon dating and oxygen isotope variations in Late Pleistocene syngenetic ice-wedges, Northern Siberia. Permafrost and Periglacial Processes 8, (1997). 335345.Google Scholar
Yershov, E.D. General Geocryology. Studies in Polar Research. (1998). Cambridge Univ. Press, English Edition, 580 pp.Google Scholar