Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T05:23:43.010Z Has data issue: false hasContentIssue false

Glacial and Holocene terrestrial temperature variability in subtropical east Australia as inferred from branched GDGT distributions in a sediment core from Lake McKenzie

Published online by Cambridge University Press:  20 January 2017

Martijn Woltering*
Affiliation:
WA-Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, WA, Australia
Pia Atahan
Affiliation:
Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney, PMB 1 Menai NSW 2234, Australia
Kliti Grice
Affiliation:
WA-Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, WA, Australia
Henk Heijnis
Affiliation:
Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney, PMB 1 Menai NSW 2234, Australia
Kathryn Taffs
Affiliation:
Southern Cross Geoscience and School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia
John Dodson
Affiliation:
Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney, PMB 1 Menai NSW 2234, Australia
*
*Corresponding author.E-mail address:[email protected] (M.Woltering).

Abstract

Branched glycerol dialkyl glycerol tetraether (GDGT) distributions observed in a sediment core from Lake McKenzie were utilized to quantitatively reconstruct the pattern of mean annual air temperature (MAAT) from coastal subtropical eastern Australia between 37 and 18.3 cal ka BP and 14.0 cal ka BP to present. Both the reconstructed trend and amplitude of MAAT changes from the top of the sediment core were nearly identical to a local instrumental MAAT record from Fraser Island, providing confidence that in this sediment core branched GDGTs could be used to produce a quantitative record of past MAAT. The reconstructed trend of MAAT during 37 to 18.3 cal ka BP and timing of the Last Glacial Maximum (LGM) in the Lake McKenzie record were in agreement with previously published nearby marine climate records. The amplitude of lower-than-present MAAT during the LGM potentially provides information on the latitude of separation of the Tasman Front from the East Australian current in the subtropical western Pacific. The Lake McKenzie record shows an earlier onset of near modern day warm temperatures in the early Holocene compared to marine records and the presence of a warmer than present day period during the mid-Holocene.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, N.J., McGregor, H.V., Gagan, M.K., Hantoro, W.S., and Suwargadi, B.W. Oscillations in the southern extent of the Indo-Pacific warm pool during the mid-Holocene. Quaternary Science Reviews 28, (2009). 27942803.CrossRefGoogle Scholar
Appleby, P.G. Chronostratigraphic techniques in recent sediments. Last, W.M., and Smol, J.P. Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring and Chronological Techniques 1, (2001). Kluwer Academic Publishers, Dordrecht. 171203.Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.CrossRefGoogle Scholar
Appleby, P.G., and Oldfield, F. Application of 210Pb to sediment studies. Ivonavich, M., and Harmon, R.S. Uranium-Series disequilibrium: Applications to Earth, Marine and Environmental Science. (1992). Oxford University Press, Oxford. 731778.Google Scholar
Armand, L.K., and Leventer, A. Palaeo sea ice distribution and reconstruction derived from the geological record. Sea Ice 469–530, (2010). Google Scholar
Australian Bureau of Meteorology (BOM) Australian Government 21/12/2013. http://www.bom.gov.au/ (2013). Google Scholar
Barrell, D.J.A., Almond, P.C., Vandergoes, M.J., Lowe, D.J., and Newnham, R.M. A composite pollen-based stratotype for inter-regional evaluation of climatic events in New Zealand over the past 30,000 years (NZ-INTIMATE project). Quaternary Science Reviews 74, (2013). 420.CrossRefGoogle Scholar
Barrows, T.T., and Juggins, S. Sea-surface temperatures around the Australian margin and Indian Ocean during the Last Glacial Maximum. Quaternary Science Reviews 24, (2005). 10171047.CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K., and Cresswell, R.G. Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research 55, (2001). 179189.CrossRefGoogle Scholar
Barrows, T.T., Juggins, S., De Deckker, P., Calvo, E., and Pelejero, C. Long-term sea surface temperature and climate change in the Australian–New Zealand region. Paleoceanography 22, (2007). PA2215 CrossRefGoogle Scholar
Bechtel, A., Smittenberg, R.H., Bernasconi, S.M., and Schubert, C.J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: insights into sources and GDGT-based proxies. Organic Geochemistry 41, (2010). 822832.CrossRefGoogle Scholar
Blaga, C.I., Reichart, G.J., Heiri, O., and Sinninghe Damsté, J.S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. Journal of Paleolimnology 41, (2009). 523540.CrossRefGoogle Scholar
Blunier, T., and Brook, E.J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, (2001). 109112.CrossRefGoogle ScholarPubMed
Bostock, H.C., Opdyke, B.N., Gagan, M.K., Kiss, A.E., and Fifield, L.K. Glacial/interglacial changes in the East Australian current. Climate Dynamics 26, (2006). 645659.CrossRefGoogle Scholar
Bowler, J.M. Aridity in Australia: age, origins and expression in aeolian landforms and sediments. Earth-Science Reviews 12, (1976). 279310.CrossRefGoogle Scholar
Bowler, J.M., Gillespie, R., Johnston, H., Boljkovac, K. Wind v water: glacial maximum records from the Willandra Lakes 34, (2012). Terra Australis, 271296.Google Scholar
Bowling, L.C. Optical properties, nutrients and phytoplankton of freshwater coastal dune lakes in south-east Queensland. Australian Journal of Marine and Freshwater Research 39, (1988). 805815.CrossRefGoogle Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.CrossRefGoogle Scholar
Calvo, E., Pelejero, C., De Deckker, P., and Logan, G.A. Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters 34, (2007). 16.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. The last glacial maximum. Science 325, (2009). 710714.CrossRefGoogle ScholarPubMed
Das, S.K., Bendle, J., and Routh, J. Evaluating branched tetraether lipid-based palaeotemperature proxies in an urban, hyper-eutrophic polluted lake in South Africa. Organic Geochemistry 53, (2012). 4551.CrossRefGoogle Scholar
D'Costa, D.M., Edney, P., Kershaw, A.P., and Deckker, P.D. Late Quaternary palaeoecology of Tower Hill, Victoria, Australia. Journal of Biogeography 16, (1989). 461482.CrossRefGoogle Scholar
De Deckker, P., Moros, M., Perner, K., and Jansen, E. Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nature Geoscience 5, (2012). 266269.CrossRefGoogle Scholar
Denton, G.H., Lowell, T.V., Heusser, C.J., Moreno, P.I., Andersen, B.G., Heusser, L.E., Schlüchter, C., and Marchant, D.R. Interhemispheric linkage of paleoclimate during the last glaciation. Geografiska Annaler. Series A Physical Geography 81, (1999). 107153.CrossRefGoogle Scholar
Donders, T.H., Wagner, F., and Visscher, H. Late Pleistocene and Holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeography Palaeoclimatology Palaeoecology 241, (2006). 417439.CrossRefGoogle Scholar
EPICA Members One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, (2006). 195198.CrossRefGoogle Scholar
Fawcett, P.J., Werne, J.P., Anderson, R.S., Heikoop, J.M., Brown, E.T., Berke, M.A., Smith, S.J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L.M., Schouten, S., Damste, J.S.S., Huang, Y.S., Toney, J., Fessenden, J., WoldeGabriel, G., Atudorei, V., Geissman, J.W., and Allen, C.D. Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470, (2011). 518521.CrossRefGoogle ScholarPubMed
Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., and Head, M.J. Temperature and surface-ocean water balance of the mid-Holocene Tropical Western Pacific. Science 279, (1998). 10141018.CrossRefGoogle ScholarPubMed
Gagan, M.K., Hendy, E.J., Haberle, S.G., and Hantoro, W.S. Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation. Quaternary International 118–119, (2004). 127143.CrossRefGoogle Scholar
Hadwen, W.L. Effects of Nutrient Additions on Dune Lakes on Fraser Island, Australia, Faculty of Environmental Sciences. (2002). Griffith University, Brisbane.Google Scholar
Harrison, S.P. Late Quaternary lake-level changes and climates of Australia. Quaternary Science Reviews 12, (1993). 211231.CrossRefGoogle Scholar
Hellstrom, J., McCulloch, M., and Stone, J. A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research 50, (1998). 167178.CrossRefGoogle Scholar
Hembrow, S., Taffs, K., Atahan, P., Parr, J., Zawadzki, A., and Heijnis, H. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere. Science of the Total Environment 468–469, (2014). 774784.CrossRefGoogle Scholar
Hua, Q., Zoppi, U., Williams, A.A., and Smith, A.M. Small-mass AMS radiocarbon analysis at ANTARES. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224, (2004). 284292.CrossRefGoogle Scholar
World Heritage Nomination – IUCN technical Evaluation 630 Fraser Island and the Great Sandy Region (Australia). Nature. (1992). IUCN, Gland, Switzerland.Google Scholar
Kershaw, A.P. Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles. Nature 322, (1986). 4749.CrossRefGoogle Scholar
Kershaw, A.P., and Nanson, G.C. The last full glacial cycle in the australian region. Global and Planetary Change 7, (1993). 19.CrossRefGoogle Scholar
Longmore, M.E. Quaternary palynological records from perched lake sediments, Fraser Island, Queensland, Australia: rainforest, forest history and climatic control. Australian Journal of Botany 45, (1997). 507526.CrossRefGoogle Scholar
Longmore, M.E., and Heijnis, H. Aridity in Australia: Pleistocene records of palaeohydrological and palaeoecological change from the perched lake sediments of Fraser Island, Queensland, Australia. Quaternary International 57–8, (1999). 3547.CrossRefGoogle Scholar
Loomis, S.E., Russell, J.M., and Sinninghe Damsté, J.S. Distributions of branched GDGTs in soils and lake sediments from western Uganda: implications for a lacustrine paleothermometer. Organic Geochemistry 42, (2011). 739751.CrossRefGoogle Scholar
Loomis, S.E., Russell, J.M., Ladd, B., Street-Perrott, F.A., and Sinninghe Damsté, J.S. Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth and Planetary Science Letters 357–358, (2012). 277288.CrossRefGoogle Scholar
McKenzie, N., Jacquier, D., Isbell, R., and Brown, K. Australian Soils and Landscapes: An Illustrated Compendium. (2004). CSIRO Publishing, Collingwood, Australia.CrossRefGoogle Scholar
Miller, G.H., Magee, J.W., and Jull, A.J.T. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemization in emu eggshells. Nature 385, (1997). 241244.CrossRefGoogle Scholar
Moss, P.T., and Kershaw, A.P. The last glacial cycle from the humid tropics of northeastern Australia: comparison of a terrestrial and a marine record. Palaeogeography Palaeoclimatology Palaeoecology 155, (2000). 155176.CrossRefGoogle Scholar
Moss, P.T., and Kershaw, A.P. A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP Site 820. Palaeogeography Palaeoclimatology Palaeoecology 251, (2007). 422.CrossRefGoogle Scholar
Niemann, H., Stadnitskaia, A., Wirth, S.B., Gilli, A., Anselmetti, F.S., Sinninghe Damsté, J.S., Schouten, S., Hopmans, E.C., and Lehmann, M.F. Bacterial GDGTs in Holocene sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer. Climate of the Past 8, (2012). 889906.CrossRefGoogle Scholar
Pearson, E.J., Juggins, S., Talbot, H.M., Weckstrom, J., Rosen, P., Ryves, D.B., Roberts, S.J., and Schmidt, R. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: renewed potential for the application of GDGT-paleothermometry in lakes. Geochimica et Cosmochimica Acta 75, (2011). 62256238.CrossRefGoogle Scholar
Peterse, F., Prins, M.A., Beets, C.J., Troelstra, S.R., Zheng, H., Gu, Z., Schouten, S., and Damsté, J.S.S. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth and Planetary Science Letters 301, (2011). 256264.CrossRefGoogle Scholar
Peterse, F., van der Meer, J., Schouten, S., Weijers, J.W.H., Fierer, N., Jackson, R.B., Kim, J.H., and Sinninghe Damsté, J.S. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochimica et Cosmochimica Acta 96, (2012). 215219.CrossRefGoogle Scholar
Petherick, L., Bostock, H., Cohen, T.J., Fitzsimmons, K., Tibby, J., Fletcher, M.S., Moss, P., Reeves, J., Mooney, S., and Barrows, T. Climatic records over the past 30 ka from temperate Australia—a synthesis from the Oz-INTIMATE workgroup. Quaternary Science Reviews 74, (2013). 5877.CrossRefGoogle Scholar
Pickett, E.J., Harrison, S.P., Hope, G., Harle, K., Dodson, J.R., Peter Kershaw, A., Colin Prentice, I., Backhouse, J., Colhoun, E.A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A.H., McKenzie, M., Newsome, J.C., Penny, D., Powell, J., Ian Raine, J., Southern, W., Stevenson, J., Sutra, J.-P., Thomas, I., van der Kaars, S., and Ward, J. Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. Journal of Biogeography 31, (2004). 13811444.CrossRefGoogle Scholar
Reeves, J.M., Bostock, H.C., Ayliffe, L.K., Barrows, T.T., De Deckker, P., Devriendt, L.S., Dunbar, G.B., Drysdale, R.N., Fitzsimmons, K.E., and Gagan, M.K. Palaeoenvironmental change in tropical Australasia over the last 30,000 years—a synthesis by the OZ-INTIMATE group. Quaternary Science Reviews (2013). 97114.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeye, C.E. Intcal09 and marine09 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rueda, G., Rosell-Mele, A., Escala, M., Gyllencreutz, R., and Backman, J. Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak. Organic Geochemistry 40, (2009). 287291.CrossRefGoogle Scholar
Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., and Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, (2012). 4954.CrossRefGoogle ScholarPubMed
Sinninghe Damsté, J.S., Hopmans, E.C., Pancost, R.D., Schouten, S., and Geenevasen, J.A.J. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chemical Communications (2000). 16831684.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Ossebaar, J., Abbas, B., Schouten, S., and Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73, (2009). 42324249.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Ossebaar, J., Schouten, S., and Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quaternary Science Reviews 50, (2012). 4354.CrossRefGoogle Scholar
Suggate, R.P. Late pliocene and quaternary glaciations of New Zealand. Quaternary Science Reviews 9, (1990). 175197.CrossRefGoogle Scholar
Sun, Q., Chu, G.Q., Liu, M.M., Xie, M.M., Li, S.Q., Ling, Y.A., Wang, X.H., Shi, L.M., Jia, G.D., and Lu, H.Y. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. Journal of Geophysical Research-Biogeosciences 116, (2011). Google Scholar
Tierney, J.E., and Russell, J.M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Organic Geochemistry 40, (2009). 10321036.CrossRefGoogle Scholar
Tierney, J.E., Russell, J.M., Huang, Y.S., Sinninghe Damsté, J.S., Hopmans, E.C., and Cohen, A.S. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, (2008). 252255.CrossRefGoogle ScholarPubMed
Tierney, J.E., Russell, J.M., Eggermont, H., Hopmans, E.C., Verschuren, D., and Sinninghe Damsté, J.S. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochimica et Cosmochimica Acta 74, (2010). 49024918.CrossRefGoogle Scholar
Tierney, J.E., Schouten, S., Pitcher, A., Hopmans, E.C., and Sinninghe Damsté, J.S. Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochimica et Cosmochimica Acta 77, (2012). 561581.CrossRefGoogle Scholar
Troedson, A.L., and Davies, P.J. Contrasting facies patterns in subtropical and temperate continental slope sediments: inferences from east Australian late Quaternary records. Marine Geology 172, (2001). 265285.CrossRefGoogle Scholar
Turney, C.S.M., Kershaw, A.P., James, S., Branch, N., Cowley, J., Fifield, L.K., Jacobsen, G., and Moss, P. Geochemical changes recorded in Lynch's Crater, Northeastern Australia, over the past 50 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 233, (2006). 187203.CrossRefGoogle Scholar
Tyler, J.J., Nederbragt, A.J., Jones, V.J., and Thurow, J.W. Assessing past temperature and soil pH estimates from bacterial tetraether membrane lipids: evidence from the recent lake sediments of Lochnagar, Scotland. Journal of Geophysical Research-Biogeosciences 115, (2010). G001109 CrossRefGoogle Scholar
Vandergoes, M.J., Newnham, R.M., Preusser, F., Hendy, C.H., Lowell, T.V., Fitzsimons, S.J., Hogg, A.G., Kasper, H.U., and Schluchter, C. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere. Nature 436, (2005). 242245.CrossRefGoogle ScholarPubMed
Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Plant Ecology 67, (1986). 7591.CrossRefGoogle Scholar
Weijers, J.W.H., Schouten, S., Hopmans, E.C., Geenevasen, J.A.J., David, O.R.P., Coleman, J.M., Pancost, R.D., and Sinninghe Damsté, J.S. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology 8, (2006). 648657.CrossRefGoogle ScholarPubMed
Weijers, J.W.H., Schefuss, E., Schouten, S., and Sinninghe Damsté, J.S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, (2007). 17011704.CrossRefGoogle ScholarPubMed
Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C., and Sinninghe Damsté, J.S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta 71, (2007). 703713.CrossRefGoogle Scholar
Woltering, M., Johnson, T.C., Werne, J.P., Schouten, S., and Sinninghe Damsté, J.S. Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeography Palaeoclimatology Palaeoecology 303, (2011). 93102.CrossRefGoogle Scholar
Zink, K.-G., Vandergoes, M.J., Mangelsdorf, K., Dieffenbacher-Krall, A.C., and Schwark, L. Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. Organic Geochemistry 41, (2010). 10601066.CrossRefGoogle Scholar
Supplementary material: File

Woltering et al. supplementary material

Supplementary Data

Download Woltering et al. supplementary material(File)
File 33.3 KB