Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T04:13:11.858Z Has data issue: false hasContentIssue false

Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne)

Published online by Cambridge University Press:  20 January 2017

Charline Giguet-Covex*
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France
Fabien Arnaud
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France
Dirk Enters
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France GEOPOLAR, Institute of Geography, University of Bremen, Germany
Jérôme Poulenard
Affiliation:
CARRTEL, INRA, Université de Savoie, Campus universitaire, 73376 Le Bourget du Lac, France
Laurent Millet
Affiliation:
Laboratoire de Chrono-Environnement, UMR 6249 CNRS, UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon cedex, France
Pierre Francus
Affiliation:
Institut national de la recherche scientifique, Centre Eau, Terre et Environnment, Québec (Qc), Canada G1K 9A9 GEOTOP, Geochemistry and Geodynamics Research Center, CP 8888, Montréal, QC, Canada H3C 3P8
Fernand David
Affiliation:
Aix-Marseille Univ, CEREGE, UMR 6635, 13545 Aix en Provence cedex 4, France
Pierre-Jérôme Rey
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France
Bruno Wilhelm
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France
Jean-Jacques Delannoy
Affiliation:
EDYTEM, Université de Savoie, CNRS Pôle Montagne, 73376 Le Bourget du Lac, France
*
*Corresponding author. E-mail address:[email protected] (C. Giguet-Covex).

Abstract

In central Western Europe, several studies have shown that colder Holocene periods, such as the Little Ice Age, also correspond to wet periods. However, in mountain areas which are highly sensitive to erosion processes and where precipitation events can be localized, past evolution of hydrological activity might be more complicated. To assess these past hydrological changes, a paleolimnological approach was applied on a 13.4-m-long sediment core taken in alpine Lake Anterne (2063 m asl) and representing the last 3.5 ka. Lake sedimentation is mainly composed of flood deposits triggered by precipitation events. Sedimentological and geochemical analyses show that floods were more frequent during cold periods while high-intensity flood events occurred preferentially during warmer periods. In mild temperature conditions, both flood patterns are present. This underlines the complex relationship between flood hazards and climatic change in mountain areas. During the warmer and/or dryer times of the end of Iron Age and the Roman Period, both the frequency and intensity of floods increased. This is interpreted as an effect of human-induced clearing for grazing activities and reveals that anthropogenic interferences must be taken into account when reconstructing climatic signals from natural archives.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M.R., Ingram, W.J., (2002). Constraints on future changes in climate and the hydrological cycle. Nature 419, 224232.Google Scholar
Arnaud, F., Lignier, V., Revel, M., Desmet, M., Beck, C., Pourchet, M., Charlet, A., Trentesaux, A., Tribovillard, N., (2002). Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, North French Alps). Terra Nova 14–4, 225232.CrossRefGoogle Scholar
Arnaud, F., Revel-Rolland, M., Bosch, D., Winiarski, T., Chapron, E., Desmet, M., Tribovillard, N., Givelet, N., (2004). A reliable 300 years-long history of lead contamination in Northern French Alps from distant lake sediment records. Journal of Environmental Monitoring 6–5, 448456.Google Scholar
Arnaud, F., Revel-Rolland, M., Chapron, E., Desmet, M., Tribovillard, N., (2005). 7200 years of Rhône river flooding activity recorded in Lake Le Bourget: a high resolution sediment record of NW Alps hydrology. The Holocene 15–3, 420428.Google Scholar
Arnaud, F., Serralongue, J., Winiarski, T., Desmet, M., Paterne, M., (2006). Pollution au plomb dans la Savoie antique (II-IIIe s ap J-C) en relation avec une installation métallurgique de la cité de Vienne. Comptes Rendus – Géosciences 338, 244252.Google Scholar
Beck, C., (2009). Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews 96, 327344.Google Scholar
Beniston, M., Diaz, H.F., Bradley, R.S., (1997). Climatic change at high elevation sites: an overview. Climatic Change 36, 233251.Google Scholar
Benito, G., Lang, M., Barriendos, M., Llasat, M.C., Francés, F., Ouarda, T., Thornydcraft, V.R., Enzel, Y., Bardossy, A., Coeur, D., Bobée, B., (2004). Use of systematic, paleoflood and historical data for improvement of flood risk estimation, review of scientific methods. Natural Hazards 3, 623643.Google Scholar
Blaauw, M., (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronology 5, 512518.Google Scholar
Blass, A., Anselmetti, F.S., Ariztegui, D., (2003). 60 years of glaciolacustrine sedimentation in Steinsee (Sustenpass, Switzerland) compared with historic events and instrumental meteorological data. Eclogae geol. Helv. 96 Supplement 1, S59S71.Google Scholar
Bøe, A.G., Dahl, S.O., Lie, Ø., Nesje, A., (2006). Holocene river floods in the upper Glomma catchment, southern Norway: a high-resolution multiproxy record from lacustrine sediments. The Holocene 16, 445455.CrossRefGoogle Scholar
Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., Nanni, T., (2004). Temperature, precipitation and extreme events during the last century in Italy. Global and Planetary Change 4, 141149.Google Scholar
Büntgen, U., Frank, D.C., Nieverglet, D., Esper, J., (2006). Summer temperature variations in the European Alps, A.D. 755–2004. Journal of Climate 19, 56065623.CrossRefGoogle Scholar
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., Esper, J., (2011). 2500 years of European climate variability and human susceptibility. Science 331, 578582. http://dx.doi.org/10.1126/science.1197175CrossRefGoogle ScholarPubMed
Bussmann, F., Anselmetti, F., (2010). Rosseberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss Journal of Geosciences 103, 4359.Google Scholar
Campbell, C., (1998). Late Holocene Lake sedimentology and climate change in Southern Alberta, Canada. Quaternary Research 49, 96101.Google Scholar
Christensen, J.H., Christensen, O.B., (2003). Severe summertime flooding in Europe. Nature 421, 805.CrossRefGoogle ScholarPubMed
Cockburn, J.M.H., Lamoureux, S.F., (2008). Inflow and lake controls on short-term mass accumulation and sedimentary particle size in a High Arctic lake: implications for interpreting varved lacustrine sedimentary records. Journal of Paleolimnology 40, 923942.CrossRefGoogle Scholar
Croudace, I.W., Rindby, A., Rothwell, G., (2006). ITRAX: description and evaluation of a new multi-function X-ray core scanner. Rothwell, R.G., New Techniques in Sediment Core Analysis. Publication, Geological Society of London Special. 5163.Google Scholar
Dapples, F., Lotter, A.F., van Leeuwen, J.F.N., van der Knapp, W.O., Dimitriadis, S., Oswald, D., (2002). Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology 27, 239248.Google Scholar
David, F., (2010). Expansion of green alder (Alnus alnobetula (Ehrh) K.Koch) in the northern French Alps: a palaeoecological point of view. Compte Rendu de l'Académie des sciences, Biologies 333, 424428. http://dx.doi.org/10.1016/j.crvi.2010.01.002Google Scholar
Debret, M., Chapron, E., Desmet, M., Rolland-Revel, M., Magand, O., Trentesaux, A., Bout-Roumazeille, V., Nomade, J., Arnaud, F., (2010). North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget. France. Quatern. Sci. Rev. 29, 21852200.Google Scholar
Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., (2000). Climate extremes: observation, modeling, and impacts. Science 289, 20682074.Google Scholar
Enters, D., Arnaud, F., Poulenard, J., Giguet-Covex, C., Malet, E., Wilhelm, B., (2009). A Coupled Environmental Monitoring and Lake Sediment Study to Understand Factors Generating Torrential Floods in an Alpine Catchment (Giffre Valley, NW French Alps). EGU Congress, Austria.Google Scholar
Francus, P., Bradley, R.S., Abbott, M.B., Patridge, W., Keimig, F., (2002). Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophysical Research Letters 29, 20(1998).Google Scholar
Fuhrer, J., Beniston, M., Fischlin, A., Frei, Ch., Goyette, S., Jasper, K., Pfister, Ch., (2006). Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change 79, 79102.Google Scholar
Frei, C., Christensen, J.H., Déqué, M., Jacob, D., Jones, R.G., Vidale, P.L., (2003). Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. Journal of Geophysical Research 108, D3, 4124 http://dx.doi.org/10.1029/2002JD002287Google Scholar
Frei, C., Schöll, R., Fukutome, S., Schmidli, J., Vidale, P.L., (2006). Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research 111, http://dx.doi.org/10.1029/2005JD005965Google Scholar
Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.-R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.-J., Delannoy, J.-J., (2011). Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): the role of climate and human activities. The Holocene 12, 651665. http://dx.doi.org/10.1177/0959683610391320Google Scholar
Heiri, O., Lotter, A.F., (2003). 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. Journal of Paleolimnology 30, 273289.Google Scholar
Heiri, O., Wick, L., van Leeuwen, J.F.N., van der Knaap, W.O., Lotter, A.F., (2003). Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Paleogeography, Paleoclimatology, Paleoecology 189, 3553.CrossRefGoogle Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the South central Brooks Range, Alaska. Ecological Monographs 79, 201219.Google Scholar
Holzhauser, H., Magny, M., Zumb"hl, H.J., (2005). Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15, 789801.Google Scholar
Jacob, J., Disnar, J.-R., Arnaud, F., Gauthier, E., Billaud, Y., Chapron, E., Bardoux, G., (2009). Impacts of new agricultural practices on soil erosion during the Bronze Age in the French Prealps. The Holocene 19, 2, 241249.Google Scholar
Lanci, L., Hirt, A.M., Lotter, A.F., Sturm, M., (2001). A record of Holocene climate in the mineral magnetic record of Alpine lakes: Sägistalsee and Hinterburgsee. Earth and Planetary Science Letters 188, 2944.Google Scholar
Leeman, A., Niessen, F., (1994). Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4, 259268.Google Scholar
Magny, M., (2004). Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113, 6579.Google Scholar
Merz, R., Blöschl, G., (2003). Regional flood risk_what are the driving processes? Water resources systems-hydrological risk, management and development (proceedings of symposium HS02b held during IUGG2003 at Sapporo). IAHS 281, 4958.Google Scholar
Millet, L., Arnaud, F., Heiri, O., Magny, M., Verneaux, V., Desmet, M., (2009). Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps. The Holocene 19, 2, 317328.Google Scholar
Monna, F., Galop, C., Carozza, L., Tual, M., Beyrie, A., Marembert, F., Chateau, C., Domink, J., Grousset, F.E., (2004). Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Science of the Total Environment 327, 197214.Google Scholar
Mulder, T., Cochonat, P., (1996). Classification of offshore mass movements. Journal of Sedimentary Research 66, 4357.Google Scholar
Mulder, T., Alexander, J., (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269299.Google Scholar
Nesje, A., Olaf Dahl, S., Matthews, J.A., Berrisford, M.S., (2001). A 4500-yr record of river floods obtained from a sediment core in Lake Atnsjøen, eastern Norway. Journal of Paleolimnology 25, 329342.CrossRefGoogle Scholar
Palmer, T.N., Räisänen, J., (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512514.Google Scholar
Parris, A.S., Bierman, P.R., Noren, A.J., Prins, M.A., Lini, A., (2009). Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. Journal of Paleolimnology http://dx.doi.org/10.1007/s10933-009-9311-1Google Scholar
Pidwirny, , Michael, . (2008). Soil erosion and deposition. Encyclopedia of Earth. Editor Cutler, J. Cleveland. <http://www.eoearth.org/article/Soil_erosion_and_deposition>. Topic Editor, Draggan, Sidney. Environmental Information Coalition (EIC) of the National Council for Science and the Environment (NCSE), Washington D.C., USA.Google Scholar
R Development Core Team(2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.3-900051-07-0 http://www.R-project.org/.Google Scholar
Rebetez, M., Lugon, R., Baeriswyl, P.A., (1997). Climatic change and debris flow in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Climatic Change 36, 371389.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, last 50,000 years cal BP. Radiocarbon 51, 11111150.CrossRefGoogle Scholar
Rey, P.J., (2009). Premières occupations de la montagne sur les versants du col d'Anterne (2257 mètres). Bilan scientifiques de la région Rhône Alpes 2008, Ministère de la culture et de la communication. 205207.Google Scholar
Rey, P.J., (2010). Passy-Servoz : les premières occupations des versants du col d'Anterne. Bilan scientifiques de la région Rhône Alpes 2009, Ministère de la culture et de la communication. 198200.Google Scholar
Rico, M., Benito, G., Barnolas, A., (2001). Combined paleoflood and rainfall-runoff assessment of mountain floods (Spanish Pyrenees). Journal of Hydrology 245, 5972.Google Scholar
Sander, J., Dotzek, N., (2010). The impact of climate change on severe convective storms over Europe. EMS Annual Meeting Abstracts 7, 532.Google Scholar
Schmidt, R., Koining, K.A., Thompson, R., Kamenik, C., (2002). A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unter Landschitzsee, Niedere Tauern). Palaeogeography, Palaeoclimatology, Palaeoecology 187, 101120.Google Scholar
Schmidt, R., Kamenik, C., Roth, M., (2007). Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps. Journal of Paleolimnology 38, 541554.Google Scholar
Schmocker-Fackel, P., Naef, F., (2010). More frequent flooding in Switzerland since 1850. Journal of Hydrology 381, 18.Google Scholar
Schulte, L., Veit, H., Burjachs, F., Julià, R., (2009). Lütschine fan delta response to climate variability and land use in the Bernese Alps during the last 2400 years. Geomorphology 108, 107121.Google Scholar
Strasser, M., Stegmann, S., Bussmann, F., Anselmetti, F.S., Rick, B., Kopf, A., (2007). Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Marine Geology 240, 7797.Google Scholar
Trask, P.D., (1930). Mechanical analysis of sediments by centrifuge. Economic Geology 25, 581599.Google Scholar
Trenberth, K.E., (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42, 327339.Google Scholar