Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T10:17:50.630Z Has data issue: false hasContentIssue false

Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record

Published online by Cambridge University Press:  20 January 2017

Barbara Hermanowski*
Affiliation:
University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Göttingen, Germany
Marcondes Lima da Costa
Affiliation:
Universidade Federal do Pará, Centro de Geociências, Departamento de Geoquímica e Petrologia, Av. Augusto Correa 1, Guamá, 66075-900 Belém, Brazil
Hermann Behling
Affiliation:
University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Göttingen, Germany
*
*Corresponding author. Fax: + 49 551/39 8449. E-mail address:[email protected] (B. Hermanowski).

Abstract

New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., da Silva, F., Soubiès, F., Suguio, K., Turcq, B., van der Hammen, T., (1991). Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de L'Amazonie au cours des 60,000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus de l' Academie des Sciences Paris Serie II 312, 673678.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Beerling, D.J., Mayle, F.E., (2006). Contrasting effects of climate and CO2 on Amazonian ecosystems since the last glacial maximum. Global Change Biology 12, 19771984.Google Scholar
Behling, H., (2002). Late Quaternary vegetation and climate dynamics in southeastern Amazonia inferred from Lagoa da Confus"o in Tocantins State, northern Brazil. Amazoniana 17, 2739.Google Scholar
Behling, H., Costa, M.L., (2000). Holocene environmental changes from the Rio Curuá record in the Caxiuanã region, Eastern Amazon Basin. Quaternary Research 53, 369377.Google Scholar
Behling, H., Hooghiemstra, H., (2000). Holocene Amazon rainforest-savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15, 687695.3.0.CO;2-6>CrossRefGoogle Scholar
Behling, H., Hooghiemstra, H., (2001). Neotropical savanna environments in space and time: Late Quaternary interhemispheric comparisons. Markgraf, V., Interhemispheric Climate Linkages. Academic Press, 307323.Google Scholar
Bennett, K.D., (1998). Psimpoll 4.10 and Pscomb 1.03-C programs for plotting pollen diagrams and analysing pollen data. http://www.kv.geo.uu.se/psimpoll_manual/4.00/psimpoll.htm.Google Scholar
Brunschön, C., Behling, H., (2009). Late Quaternary vegetation, fire and climate history reconstructed from two cores at Cerro Toledo, Podocarpus National Park, southeastern Ecuadorian Andes. Quaternary Research 72, 388399.Google Scholar
Buck, C.E., Christen, J.A., James, G.N., (1999). BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7, http://intarch.ac.uk/journal/issue7/buck/URL Online service: http://bcal.sheffield.ac.uk.Google Scholar
Burbridge, R.E., Mayle, F.E., Killeen, T.J., (2004). Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research 61, 215230.CrossRefGoogle Scholar
Bush, M.B., (2004). On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 517.Google Scholar
Bush, M.B., Silman, M.R., (2004). Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. Journal of Quaternary Science 19, 677684.Google Scholar
Bush, M.B., Miller, M.C., De Oliveira, P.E., Colinvaux, P.A., (2000). Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10, 543553.Google Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., Moreno, J.E., (2004). Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology 214, 359393.CrossRefGoogle Scholar
Carreira, L.M.M., Barth, O.M., (2003). Atlas de Pólen da vegetação de canga da Serra de Carajás (Pará, Brasil). Museu Paraense Emílio Goeldi, Belém.Google Scholar
Carreira, L.M.M., da Silva, M.F., Lopes, J.R.C., Nascimento, L.A.S., (1996). Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Museu Paraense Emílio Goeldi, Bel"m.Google Scholar
Cleef, A., Silva, M.F.F., (1994). Plant communities of the Serra dos Carajás (Pará), Brazil. Boletim do Museu Paraense Emilio Goeldi Serie Botanica 10, 269281.Google Scholar
Clement, A.C., Seager, R., Cane, M.A., (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleooceanography 15, 731737.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., (1999). Amazon Pollen Manual and Atlas. Harwood Academic Press, New York.pp. 344.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Bush, M.B., (2000). Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypothesis. Quaternary Science Reviews 19, 141169.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., (1996a). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.Google Scholar
Colinvaux, P.A., Liu, K.-B., de Oliveira, P., Bush, M.B., Miller, M.C., Steinitz Kannan, M., (1996b). Temperature depression in the lowland tropics in glacial times. Climatic Change 32, 1933.CrossRefGoogle Scholar
Cook, K.H., (2009). South American climate variability and change: remote and regional forcing processes. Vimeux, F., Sylvestre, F., Khodri, M., Past Climate Variability in South America and Surrounding Regions-From the Last Glacial Maximum to the Holocene. Springer Science+Business Media B.V, .CrossRefGoogle Scholar
Cordeiro, R.C., Turcq, B., Suguio, K., Oliveira da Silva, A., Sifeddine, A., Volkmer-Ribeiro, C., (2008). Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Global and Planetary Change 61, 4962.Google Scholar
Cowling, S.A., Maslin, M.A., Sykes, M.T., (2001). Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quaternary Research 55, 140149.CrossRefGoogle Scholar
Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D., (2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical Application of Climatology 78, 137156.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., (2000). A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene 10, 2132.Google Scholar
De Freitas, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., Ribeiro, A.d.S., Boulet, R., (2001). Late Quaternary vegetation dynamics in the Southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55, 3946.CrossRefGoogle Scholar
Elias, V.O., Simoneit, B.R.T., Cordeiro, R.C., Turcq, B., (2001). Evaluating levoglucosan as an indicator of biomass burning in Carajás, Amazônia: a comparison to the charcoal record. Geochimica et Cosmochimica Acta 6, 267272.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analyses. 4th edWiley, New York.pp. 216 and 338.Google Scholar
Fu, R., Dickinson, R.E., Chen, M., Wang, H., (2001). How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon?. Journal of Climate 14, 40034026.Google Scholar
Gardner, J.J., Whitlock, C., (2001). Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. The Holocene 11, 541549.Google Scholar
Gentry, A.H., (1993). A Field Guide to the Families and Genera of Woody Plants of Northwest South America. University of Chicago Press, Chicago.Google Scholar
Gosling, W.D., (2009). Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.CrossRefGoogle Scholar
Grimm, E.C., (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.CrossRefGoogle Scholar
Haberle, S.G., Maslin, M.A., (1999). Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP Site 932. Quaternary Research 51, 2738.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.Google Scholar
IBAMA, . (2003). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de manejo para uso múltiplo da floresta nacional de Carajás. http://www.ibama.gov.br/.Google Scholar
INMET, . (2011). Instituto Nacional de Meterologia. Monitoramento das Estações Convencionais Ministério da Agricultura, Pecuária e Abastecimento. http://www.inmet.gov.br/.Google Scholar
Irion, G., Bush, M.B., Nunes de Mello, J.A., St"ben, D., Neumann, T., Müller, G., Morais, J.O., Junk, J.W., (2006). A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 523535.CrossRefGoogle Scholar
Jacob, J., Huanga, Y., Disnar, J.-R., Sifeddine, A., Boussafir, M., Spadano Albuquerque, A.L., Turcq, B., (2007). Paleohydrological changes during the last deglaciation in Northern Brazil. Quaternary Science Reviews 26, 10041015.Google Scholar
Kastner, T.P., Goñi, M.A., (2003). Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology 31, 291294.Google Scholar
Keefer, D.K., de France, S.D., Moseley, M.E., Richardson III, J.B., Satterlee, D.R., Day-Lewis, A., (1998). Early Maritime Economy and El Niño Events at Quebrada Tacahuay, Peru. Science 281, 18331835.Google Scholar
Kipnis, R., Caldarelli, S.B., de Oliveira, W.C., (2005). Contribuição para a cronologia da colonização amazônica e suas implicações teóricas. Revista de Arqueologia 18, 8193.CrossRefGoogle Scholar
Koutavas, A., Lynch-Stieglitz, J., (2004). Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. Bradley, R.S., Diaz, H.F., The Hadley Circulation: Present, Past and Future. Kluwer Acad, Dordrecht, Netherlands. 347369.Google Scholar
Liebmann, B., Marengo, J.A., (2001). Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. Journal of Climate 14, 43084318.2.0.CO;2>CrossRefGoogle Scholar
Liu, Z., Kutzbach, J., Wu, L., (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, 22652268.Google Scholar
Magalhães, M.P., (2009). Evolução antropomorfa da Amazônia. Revista de História da Arte e Arqueologia 12, 538.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrio, J.C., Bush, M., Cleef, A., Duivenvoorden, J., Kappelle, M., De Oliveira, P., Teixeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.-P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., Salgado-Labouriau, M.L., (2005). Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology 121, 175.CrossRefGoogle Scholar
Marengo, J.A., Druyan, L.M., Hastenrath, S., (1993). Observational and modelling studies of Amazonia interannual climate variability. Climatic Change 23, 267286.CrossRefGoogle Scholar
Marengo, J.A., Liebmann, B., Kousky, V.E., Filizola, N.P., Wainer, I.C., (2001). Onset and end of the rainy season in the Brazilian Amazon Basin. Journal of Climate 14, 833852.Google Scholar
Marengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D., Sampaio de Oliveira, G., de Oliveira, R., Camargo, H., Alves, L.M., Brown, I.F., (2008). The Drought of Amazonia in 2005. Journal of Climate 21, 495516.Google Scholar
Martin, L., Fournier, M., Mourguiart, P., Sifeddine, A., Tursq, B., Absy, M.L., Flexor, J.-M., (1993). Southern Oscillation signal in South American palaeoclimatic data of the last 7000 years. Quaternary Research 39, 338346.Google Scholar
Maslin, M., (2004). Ecological versus climatic thresholds. Science 306, 21972198.Google Scholar
Maslin, M.A., Burns, S.J., (2000). Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290, 22852287.Google Scholar
Mayle, F.E., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.Google Scholar
Mayle, F.E., Power, M.J., (2008). Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B 363, 18291838.Google Scholar
Mayle, F.E., Burn, M.J., Power, M., Urrego, D.H., (2009). Vegetation and fire at the Last Glacial Maximum in tropical South America. Vimeux, F., Sylvestre, F., Khodri, M., Past Climate Variability in South America and Surrounding Regions—From the Last Glacial Maximum to the Holocene. Springer Science+Business Media B.V, 89112.Google Scholar
Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore III, B., Vorosmarty, C.J., Schloss, A.L., (1993). Global climate change and terrestrial net primary production. Nature 363, 234240.Google Scholar
Morellato, L.P.C., Rosa, N.A., (1991). Caracterização de alguns tipos de vegetação na região amazônica, Serra dos Carajás, Pará, Brasil. Revista Brasileira Botânica 14, 114.Google Scholar
Mourguiart, P., Ledru, M.P., (2003). Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 3, 195198.Google Scholar
Niemann, H., Behling, H., (2008). Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. Journal of Quaternary Sciences 3, 203212.CrossRefGoogle Scholar
Nobre, C.A., Seller, P.J., Shukla, J., (1991). Amazonian deforestation and regional climate change. Journal of Climate 4, 957988.Google Scholar
Nobre, P., Shukla, J., (1996). Variations of sea surface temperature, wind stress, and rainfall over the Tropical Atlantic and South America. Journal of Climate 9, 24642479.2.0.CO;2>CrossRefGoogle Scholar
Nunes, J.A., (2009). Florística, estrutura e relaçães solo-vegetação em gradient fitofisionômico sobre canga. na Serra Sul, FLONA de Carajás-Pará. Dissertação apresentada – Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Botânica, para obtenção do titulo de Magister Scientiae. Online available: ftp://ftp.bbt.ufv.br/teses/botanica/2009/217950f.pdf.Google Scholar
Otto-Bliesner, B.L., Brady, E.C., Shin, S.-I., Liu, Z., Shields, C., (2003). Modeling El Niño and its tropical teleconnections during the last glacial–interglacial cycle. Geophysical Research Letters 30, 14.CrossRefGoogle Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., Seltzer, G.O., (2002). A Vegetation and Fire History of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 13.Google Scholar
Peterson, L., Haug, G., (2006). Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 234, 97113.Google Scholar
Rayol, B.P., (2006). Análise florística e estrutural da vegetação xerofítica das savannas metalófilas na Floresta Nacional de Carajás; subssídios – conservação. Dissertação de mestrado em Botânica com area de concentração em Botânica Tropical pela UniversidadeFederal Rural da Amazônia e Museu Paraense Emílio Goeldi. Online available: http://marte.museu-goeldi.br/zoologia/turma2004/dissertacaoBrenoRayol.pdf.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04-terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516520.CrossRefGoogle ScholarPubMed
Roubik, D.W., Moreno, E., Pollen and Spores of Barro Colorado Island.(1991). Monographs in Systematic Botany, Missouri Botanical Garden. 36, Google Scholar
Rühlemann, C., Mulitza, S., Müller, P.J., Wefer, G., Zahn, R., (1999). Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511514.Google Scholar
Sadori, L., Giardini, M., (2007). Charcoal analysis, a method to study vegetation and climate of the Holocene: the case of Lago di Pergusa (Sicily, Italy). Geobios 40, 173180.Google Scholar
Salomão, R.P., Silva, M.F.F., Rosa, N.A., (1988). Inventário ecoloógico em floresta pluvial tropical de Terra Firme, Serra Norte, Carajás, Pará. Boletim do Museu Paraense Emilio Goeldi Serie Botanica 4, 146.Google Scholar
Sandweiss, D.H., Richardson, J.B., Reitz, E.J., Rollins, H.B., Maasch, K.A., (1996). Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño. Science 273, 15311533.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson III, J.B., Rollins, H.B., Clement, A., (2001). Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, 603606.Google Scholar
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubi"s, F., Cordeiro, R.C., Suguio, K., (2001). Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 221235.CrossRefGoogle Scholar
Silva, M.F.F., Secco, R., Lobo, M.G.A., (1996). Aspectos ecológicos da vegetação rupestre da Serra dos Carajás, Estado do Pará, Brasil. Acta Amazonica 26, 1744.Google Scholar
Silva Dias, P.L., Turcq, B., Silva Dias, M.A.F., Braconnot, P., Jorgetti, T., (2009). Mid-Holocene climate of tropical South America: a model-data approach. Vimeux, F., Sylvestre, F., Khodri, M., Past Climate Variability in South America and Surrounding Regions—From the Last Glacial Maximum to the Holocene. Springer Science+Business Media B.V, 978-90-481-2671-2.Google Scholar
Soubiés, F., (1979). Existence d'une phase sèche en Amazonie brésilienne datée par la présence de carbons dans les sols (6.000-3.000 ANS B.P.). Cah. O.R.S.T.O.M. sér. Géol. 11, 133"148.Google Scholar
Sternberg, L., (2001). Savanna–forest hysteresis in the tropics. Global Ecology and Biogeography 10, 369378.CrossRefGoogle Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615621.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., (1995). Cooling of tropical Brazil (5"C) during the last glacial maximum. Science 269, 379383.Google Scholar
Sylvestre, F., (2009). Moisture pattern during the Last Glacial Maximum in South America. Vimeux, F., Sylvestre, F., Khodri, M., Past Climate Variability in South America and Surrounding Regions—From the Last Glacial Maximum to the Holocene. Springer Science+Business Media B.V, 327.Google Scholar
Teeuw, R.M., Rhodes, E.J., (2004). Aeolian activity in northern Amazonia: optical dating of Late Pleistocene and Holocene palaeodunes. Journal of Quaternary Science 19, 4954.Google Scholar
Turcq, B., Cordeiro, R.C., Sifeddine, A., Simões Filho, F.F.L., Albuquerque, A.L.S., Abrão, J.J., (2002). Carbon storage in Amazonia during the Last Glacial Maximum: secondary data and uncertainties. Chemosphere 49, 821835.Google Scholar
Van der Hammen, T., Absy, M.L., (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 247261.Google Scholar
Zheng, W., Braconnot, P., Guilyardi, E., Merkel, U., Yu, Y., (2008). ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations. Climate Dynamics 30, 745762.Google Scholar