Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:10:47.484Z Has data issue: false hasContentIssue false

Eemian and early Weichselian environmental changes at the Jałówka site, NE Poland, and their correlation with marine and ice records

Published online by Cambridge University Press:  13 April 2021

Mirosława Kupryjanowicz*
Affiliation:
Department of Paleobiology, Faculty of Biology, University of Białystok, 15-425 Białystok, Ciołkowskiego 1J, Poland
Magdalena Fiłoc
Affiliation:
Department of Paleobiology, Faculty of Biology, University of Białystok, 15-425 Białystok, Ciołkowskiego 1J, Poland
Barbara Woronko
Affiliation:
Faculty of Geology, Warsaw University, Żwirki i Wigury 93, 02-089Warsaw, Poland
Tomasz Mirosław Karasiewicz
Affiliation:
Faculty of Earth Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100Toruń, Poland
Joanna Rychel
Affiliation:
Polish Geological Institute, National Research Institute, Rakowiecka 4, 00-975Warsaw, Poland
Aleksander Adamczyk
Affiliation:
Faculty of Earth Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100Toruń, Poland
Joanna Jarosz
Affiliation:
Department of Paleobiology, Faculty of Biology, University of Białystok, 15-425 Białystok, Ciołkowskiego 1J, Poland
*
*Corresponding author at: Department of Paleobiology, Faculty of Biology, University of Białystok, 15-425 Białystok, Ciołkowskiego 1J, Poland; e-mail: [email protected] (M. Kupryjanowicz).

Abstract

Vegetation changes were documented across the last interglacial period (MIS 5e, Eemian) and continuing through the older part of the last glacial period (MIS 5d–a, early Weichselian). This study was based on pollen data collected at the Jałówka site, NE Poland. Two cold oscillations appeared within warm periods during this stage of the upper Pleistocene. The older oscillation was the temporary intra–interglacial cooling at the end of the Eemian. The younger one was the intra–interstadial cooling that occurred within the oldest interstadial of the early Weichselian (MIS 5c, Brørup). This last event corresponds well to the stadial separating both the Amersfoort and Brørup sensu stricto interstadials in the Netherlands and to the Montaigu event as recognized in France. The development of a pollen sequence allows speculation as to potential correlations with Greenland ice cores and marine records. We suggest that the Eemian in NE Poland may comprise not only MIS 5e, but also a part of MIS 5d. This supposition could shed light on potential for non-synchrony in upper boundaries of the MIS 5e and terrestrial Eemian in Europe. We await the development of more precise independent dating controls to validate our theory more assiduously.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.R.M., Huntley, B., 2000. Weichselian palynological records from southern Europe: correlation and chronology. Quaternary International 73, 111125.CrossRefGoogle Scholar
Allen, J.R.M., Huntley, B., 2009. Last interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 28, 15211538.CrossRefGoogle Scholar
Allen, J.R.M., Watts, W.A., Huntley, B., 2000. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quaternary International 73, 91110.CrossRefGoogle Scholar
Andersen, S.Th., 1961. Vegetation and its environment in Denmark in the Early Weichselian Glacial (Last Glacial). Danmarks Geologiske Undersogelse 75, 1175.Google Scholar
Andersen, S.Th., 1975. The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark. Danmarks Geologiske Undersogelse 1974, 4970.Google Scholar
Andersen, S. Th., 1966. Interglacial vegetation succession and lake development in Denmark. Palaeobotanist 15, 117127.Google Scholar
Andersen, S.Th., Vries, H. de, Zagwijn, W.H., 1960. Climatic change and radiocarbon dating in the Weichselian Glacial of Denmark and the Netherlands. Geologie en Mijnbouw 39, 3842.Google Scholar
Averdieck, F.R., 1967. Die Vegetationsentwicklung des Eem-Interglazials und der Frühwürm-Interstadiale von Odderade/Schleswig Holstein. Fundamenta B 2, 101125.Google Scholar
Beaulieu, J.-L. de, Reille, M., 1984. A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, 111132.CrossRefGoogle Scholar
Beaulieu, J.-L. de, Reille, M., 1989.The transition from temperate phases to stadials in the long upper Pleistocene sequence from Les Echets (France). Palaeogeography Palaeoclimatology Palaeoecology, 72, 147159.CrossRefGoogle Scholar
Beaulieu, J.-L. de, Reille, M., 1992a. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France): I. Ribains maar. Vegetation History and Archaeobotany 1, 233242.CrossRefGoogle Scholar
Beaulieu, J.-L. de, Reille, M., 1992b, The last climatic cycle at la Grande Pile, Vosges, France. A new profile. Quaternary Science Reviews 11, 431438.CrossRefGoogle Scholar
Behre, K.E., Lade, U., 1986. Eine Folge von Eem und 4 Weichsel-Interstadialen in Oerel/Niedersachsen and ihr Vegetationsablauf. Eiszeitalter und Gegenwart 36, 1136.Google Scholar
Behre, K.E., van der Plicht, J., 1992. Towards an absolute chronology for the last glacial period in Europe: radiocarbon dates from Oerel, northern Germany. Vegetation History and Archaeobotany 1, 111117.CrossRefGoogle Scholar
Berglund, B.E., Ralska-Jasiewiczowa, M., 1986. Pollen analysis and pollen diagrams. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK. pp. 455484.Google Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich.Google Scholar
Bińka, K., Nitychoruk, J., 2003. The Late Saalian, Eemian and Early Vistulian pollen sequence at Dziewule, eastern Poland. Geological Quarterly 47, 155168.Google Scholar
Bitner, K., 1957. Trzy stanowiska flory interglacjalnej w okolicach Sidry [Three localities of interglacial flora of Sidra, northly of Sokółka in Podlasie]. [In Polish with English summary.] Biuletyn Instytutu Geologicznego 118, 109154.Google Scholar
Boettger, T., Novenko, E.Yu., Velichko, A.A., Borisova, O.K., Kremenetski, K.V., Knetsch, S., Junge, F.W., 2009. Instability of climate and vegetation dynamics in Central and Eastern Europe during the final stage of the Last Interglacial (Eemian, Mikulino) and Early Glaciation. Quaternary International 207, 137144.CrossRefGoogle Scholar
Borisova, O.K., Novenko, E. Yu., Velichko, A.A., Kremenetski, K.V., Junge, F.W., Boettger, T., 2007. Vegetation and climate changes during the Eemian and Early Weichselian in the Upper Volga region (Russia). Quaternary Science Reviews 26, 25742585.CrossRefGoogle Scholar
Börner, A., Hrynowiecka, A., Stachowicz-Rybka, R., Niska, M., Moskal-del Hoyo, M., Kuznetsov, V., Maksimov, F., Petrov, A., 2018. Palaeoecological investigations and 230Th/U dating of the Eemian Interglacial peat sequence from Neubrandenburg-Hinterste Mühle (Mecklenburg-Western Pomerania, NE Germany). Quaternary International 467A: 6278.CrossRefGoogle Scholar
Borówko-Dłużakowa, Z., Halicki, B., 1957. Interglacial sections of the Suwałki region and of the adjacent territory. [In Polish with English summary.] Acta Geologica Polonia 7, 361401.Google Scholar
Brauer, A., Allen, J.R.M., Mingram, J., Dulski, P., Wulf, S., Huntley, B., 2007. Evidence for last interglacial chronology and environmental change from Southern Europe. Proceedings of the National Academy of Sciences USA 104, 450455.CrossRefGoogle ScholarPubMed
Brauer, A., Mingram, J., Frank, U., Gu, C., Schettler, G., Wulf, S., Zolitschka, B., Negendank, K.F.W., 2000. Abrupt environmental oscillations during the Early Weichselian recorded at Lago Grande di Monticchio, southern Italy. Quaternary International 74, 7990.CrossRefGoogle Scholar
Caspers, G., 1997. Die eem- und weichselzeitliche Hohlform von Gross Todtshorn (Kr. Harburg; Niedersachsen)—Geologische und palynologische Untersuchungen zu Vegetation und Klimaverlauf der letzten Kaltzeit. Schriftenreihe der Deutschen Geologischen Gesellschaft 4, 759.Google Scholar
Cheddadi, R., Mamakowa K., Guiot, Beaulieu, J., de, J.-L., Reille, M., Andrieu, V., Granoszewski, W., Peyron, O., 1998. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography Palaeoclimatology Palaeoecology 143, 7385.CrossRefGoogle Scholar
Cleveringa, P., Meijer, T., van Leeuwen, R.J.W., de Wolf, H., Pouwer, R., Lissenberg, T., Burger, A.W., 2000. The Eemian stratotype locality at Amersfoort in the central Netherlands: a re-evaluation of old and new data. Netherlands Journal of Geosciences 79, 197216.CrossRefGoogle Scholar
Danilans, I., 1973. Chetvertichnye otlozheniya Latvii [Quaternary deposits of Latvia]. [In Russian.] Zinatne, Riga.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl, J.D., Gundestrup, N,S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220CrossRefGoogle Scholar
Dorogoniewska, J.E., Shenfinkel, I.A., Grichuk, W.P., 1952. Novaya tyazhelaya zhidkost dlya sporovo-pyltsevovo analiza. Izvedenya Akademii Nauk SSSR, Seria Geografia 4, 7374.Google Scholar
Dzięciołowski, W., Tobolski, K., 1982. Quaternary climatic-ecological cycles and the evolution of soils. Soil Science Annual 33, 201211.Google Scholar
Eissmann, L., 2002. Quaternary geology of eastern Germany (Saxony, Saxony-Anhalt, South Brandenburg, Thuringia), type area of the Elsterian and Saalian Stages in Europe. Quaternary Science Reviews 21, 12751346.CrossRefGoogle Scholar
Ellenberg, H., 1988. Vegetation Ecology of Central Europe. 4th ed. Cambridge University Press, Cambridge.Google Scholar
Erd, K., 1973. Pollenanalytische Gliederung des Pleistoziins der Deutsches Demokratischen Republik. Zeitschrift für Geologische Wissenschaften 1, 10871103.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Wiley, Chichester, UK.Google Scholar
Fiłoc, M., Kupryjanowicz, M., Rzodkiewicz, M., Suchora, M., 2018. Response of terrestrial and lake environments in NE Poland to Preboreal cold oscillations (PBO). Quaternary International, 475, 101117.CrossRefGoogle Scholar
Fiłoc, M., Kupryjanowicz, M., Szeroczyńska, K., Suchora, M., Rzodkiewicz, M., 2017. Environmental changes related to the 8.2-ka event and other climate fluctuations during the middle Holocene: evidence from two dystrophic lakes in NE Poland. The Holocene 27, 15501566.CrossRefGoogle Scholar
Funder, S., Demidov, I., Yelovicheva, Y., 2002. Hydrography and mollusc faunas of the Baltic and White Sea-North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 275304.CrossRefGoogle Scholar
Granoszewski, W., 2003. Late Pleistocene vegetation history and climatic changes at Horoszki Duże, Eastern Poland: a palaeobotanical study. Acta Palaeobotanica Suppl. 4, 395.Google Scholar
Granoszewski, W., Winter, H., Rylova, T.B., Savčenko, I.E., 2012. Przebieg i korelacja sukcesji pyłkowych późnego plejstocenu na terenie Polski i Białorusi [Summary: The course and correlation of the Late Pleistocene pollen sequences from Poland and Belarus]. Przegląd Geologiczny 60, 605614.Google Scholar
Grichuk, V.P., 1961. Iskopaemye flory kak paleontologicheskaya osnova stratigrafii chetvertichnykh otlozhenii. Principy stratigraficheskogo raschleneniya pleistotsena na osnovanii paleofitologicheskikh materialov. In: Markov, K.K. (Ed.), Rel'ef i stratigrafiya chetvertichnykh otlozhenii severo-zapada Russkoi ravniny. Izdatel'stvo AN SSSR, Moscow, pp. 2572.Google Scholar
Grichuk, V.P., 1984. Late Pleistocene vegetation history. In: Velichko, A.A. (Ed.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp. 155178.Google Scholar
Hermsdorf, N., Strahl, J., 2008. Karte der Eem-Vorkommen des Landes Brandenburg. Brandenburgische Geowissenschaftliche Beiträge 15, 2355.Google Scholar
Hillbrand, M., Hadorn, P., Cugny, C., Hasenfratz, A., Galop, D., Haas, J.N., 2012. The palaeoecological value of Diporotheca rhizophila ascospores (Diporothecaceae, Ascomycota) found in Holocene sediments from Lake Nussbaumersee, Switzerland. Review of Palaeobotany and Palynology 186, 6268.CrossRefGoogle Scholar
Hillbrand, M., van Geel, B., Hasenfratz, A., Hadorn, P., Haas, J.N., 2014. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). The Holocene 24, 559568.CrossRefGoogle Scholar
Hursevič, G.K., Rylova, T.B., Fedenâ, S.A., 1995. Biostratigrafiâ verhnego plejstocena po opornym razrezam ugo-vostočnoj Belarusi. Litosfera 2, 5767.Google Scholar
Iversen, J., 1973. The development of Denmark's nature since the last glacial. Danmarks Geologiske Undersøgelse V Række 7-C.CrossRefGoogle Scholar
Jörgensen, S., 1963. Early Postglacial in Aamosen. Danmarks Geologiske Undersøgelser II Række 87.Google Scholar
Kalnina, L., 2001. Middle and Late Pleistocene Environmental Changes Recorded in the Latvian Part of the Baltic Sea Basin. Quaternaria Ser. A (9): Theses and Research Papers No 9. Department of Physical Geography and Quaternary Geology, Stockholm University.Google Scholar
Kalnina, L., Dreimanis, A., Murniece, S., 2000. Palynology and lithostratigraphy of Late Elsterian to Early Saalian aquatic sediments in the Ziemupe-Jurkalne area, Western Latvia. Quaternary International 68–71, 87109.CrossRefGoogle Scholar
Kalnina, L., Strautnieks, I., Cerina, A., 2007. Upper Pleistocene biostratigraphy and traces of glaciotectonics at the Satiki site, Western Latvia. Quaternary International 164–165, 197206.CrossRefGoogle Scholar
Klotz, S., Guiot, J., Mosbrugger, V., 2003. Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global and Planetary Changes 36, 277294.CrossRefGoogle Scholar
Klotz, S., Müller, U.C., Mosbrugger, V., Beaulieu, J.-L. de, Reille, M., 2004, Eemian to early Würmian climate dynamics: History and pattern of changes in central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 107126.CrossRefGoogle Scholar
Kondratiene, O.P., 1996. Stratigrafia i paleogeografia kvartera Litvy po paleobotanicheskim dannym. Academia, Vilnius.Google Scholar
Krukle, M., Lusina, L., Stelle, V., 1963. Profile of Pleistocene deposits at Felicianova. In: Danilans, I. (Ed.), Questions of Quaternary Geology. Vol. 2. [In Russian with English summary.] Publishing House of the Academy of Sciences of the Latvian SSR, Riga, pp. 734.Google Scholar
Kühl, N., Litt, T., 2003. Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data. Vegetation History and Archaeobotany 12, 205214.CrossRefGoogle Scholar
Kukla, G.J., de Beaulieu, J.-L., Svobodova, H., Andrieu, V., Thouveny, N., Stockhausen, H., 2002. Tentative correlation of pollen records of the last interglacial at La Grande Pile and Ribains with marine isotope stages. Quaternary Research 58, 3235.CrossRefGoogle Scholar
Kukla, G., McManus, J.F., Rousseau, D.-D., Chuine, I., 1997. How long and how stable was the last interglacial? Quaternary Science Reviews 16, 605612.CrossRefGoogle Scholar
Kupryjanowicz, M., 2008. Vegetation and climate of the Eemian and Early Vistulian Lakeland in northern Podlasie. Acta Palaeobotanica 48, 3130.Google Scholar
Kupryjanowicz, M., Ciszek, D., Mirosław-Grabowska, J., Marciniak, B., Niska, M., 2005. Two climatic oscillations during the Eemian interglacial—preliminary results of multi- proxy researches of paleolake at Solniki, NE Poland. Polish Geological Institute Special Papers 16, 5357.Google Scholar
Kupryjanowicz, M., Filbrandt-Czaja, A., Noryśkiewicz, A.M., Noryśkiewicz, B., Nalepka, D., 2004. Tilia L.—Linden. In: Ralska-Jasiewiczowa, M., Latałowa, M., Wasylikowa, K., Tobolski, K., Madeyska, E., Wright, H.E. Jr, Turner, C. (Eds.), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 217224.Google Scholar
Kupryjanowicz, M., Granoszewski, W., Fiłoc, M., 2018b. New finds of Eemian Tilia tomentosa Moench macroremains in NE Poland, and the reconstructed European range of this species during the last interglacial. Quaternary International 467A, 107116.CrossRefGoogle Scholar
Kupryjanowicz, M., Granoszewski, W., Nalepka, D., Pidek, I.A., Walanus, A., Balwierz, Z., Fiłoc, M., et al. , 2016. Instability of the environment at the end of the Eemian Interglacial as illustrated by the isopollen maps for Poland. Geological Quarterly 60, 225237.Google Scholar
Kupryjanowicz, M., Nalepka, D., Madeyska, E., 2018c. Appendix. Sites used for drawing the isopollen maps of the Eemian Interglacial in Poland. In: Kupryjanowicz, M., Nalepka, D., Madeyska, E., Turner, C. (Eds.), Eemian History of Vegetation in Poland Based on Isopollen Maps. W Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 233240.Google Scholar
Kupryjanowicz, M., Nalepka, D., Pidek, I.A., Walanus, A., Balwierz, Z., Bińka, K., Fiłoc, M., et al. .., 2018d. The east-west migration of trees during the Eemian Interglacial registered on isopollen maps of Poland. Quaternary International 467A, 178191.CrossRefGoogle Scholar
Lauterbach, S., Brauer, A., Litt, T., Schettler, G., 2012a. Re-evaluation of the Bispingen palaeolake record—a revised chronology for the Eemian in Northern Germany. In: EGU General Assembly 2012, held 22–27 April 2012, in Vienna, Austria, p. 8613.Google Scholar
Lauterbach, S., Brauer, A., Litt, T., Schettler, G., 2012b. Re-evaluation of the Bispingen palaeolake record—a revised chronology for the Eemian in Northern Germany. Poster. https://www.researchgate.net/publication/266856234_Lauterbach_EGU_2012_Poster_Bispingen_Print_version.Google Scholar
Lüthgens, C., Böse, M., Lauer, T., Krbetschek, M., Strahl, J., Wenske, D., 2011. Timing of the last interglacial in Northern Europe derived from Optically Stimulated Luminescence (OSL) dating of a terrestrial Saalian–Eemian–Weichselian sedimentary sequence in NE-Germany. Quaternary International 241, 7996.CrossRefGoogle Scholar
Mahnač, N.A., 1971. Etapy razwitiâ rastitel'nosti Belorussii v antropogene. Nauka i Technika, Minsk.Google Scholar
Mamakowa, K., 1989. Late Middle Polish Glaciation, Eemian and Early Vistulian vegetation at Imbramowice near Wrocław and the pollen stratigraphy of this part of the Pleistocene in Poland. Acta Palaeobotanica 29, 11176.Google Scholar
Marks, L., 2002. Last Glacial Maximum in Poland. Quaternary Science Reviews 21, 103110.CrossRefGoogle Scholar
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 8188.CrossRefGoogle Scholar
Marks, L., Karabanov, A., 2011. Mapa geologiczna północnej części obszaru przygranicznego Polski i Białorusi. 1: 250 000. Z tekstem objaśniającym. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw.Google Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johansen, S., Labeyrie, L., Higgins, S., 1994. High resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.CrossRefGoogle Scholar
Meirons, Z., 1972. Section of interglacial deposits at Rogali. In: Danilans, I. (Ed.), Problems of Quaternary Geology. Vol. 6. [In Russian with English summary.] Zinatne, Riga, pp. 713.Google Scholar
Menke, B., Tynni, R., 1984. Das Eeminterglazial und das Weichselfrühglazial von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozän Gliederung. Geologisches Jahrbuch A76, 3120.Google Scholar
Meyer, M.C., Spotl, C., Mangini, A., 2008. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews 27, 476496.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Blackwell Science, Oxford.Google Scholar
Müller, H., 1974. Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der eem-zeitlichenKieselgur von Bispingen/Luhe. Geologisches Jahrbuch A 21, 149168.Google Scholar
Müller, U.C., Kukla, G.J., 2004. North Atlantic current and European environments during the declining stage of the last interglacial. Geology 32, 10091012.CrossRefGoogle Scholar
Müller, U.C., Pross, J., Bibus, E., 2003. Vegetation response to rapid climate change in Central Europe during the past 140.000 yr based on evidence from the Füramoss pollen record. Quaternary Research 59, 235245.CrossRefGoogle Scholar
Müller, U.C., Sánchez Goñi, M.F., 2007. Vegetation dynamics in southern Germany during Marine Isotope Stage 5 (~130 to 70 kyr ago). In: Sirocko, F., Claussen, M., Sánchez Goñi, M.F., Litt, T. (Eds.), The Climate of Past Interglacials. Vol. 7. Elsevier, Amsterdam, pp. 277287.CrossRefGoogle Scholar
Nalepka, D., Walanus, A., 2003. Data processing in pollen analysis. Acta Palaeobotanica 43, 125134.Google Scholar
NGRIP Members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.CrossRefGoogle Scholar
Noryśkiewicz, B., 1978. Interglacjał eemski w Nakle nad Notecią [Summary: The Eemian Interglacial at Nakło on the River Noteć, N Poland]. Acta Palaeobotanica 19, 67112.Google Scholar
Noryśkiewicz, B., 2005. Analiza palinologiczna osadów—Nowy Dwór, profile 50, 59, 62. Central Geological Archives, Polish Geological Institute, Warsaw.Google Scholar
Novenko, E.Y., Seifert-Eulen, M., Boettger, T., Junge, F.W., 2008. Eemian and Early Weichselian vegetation and climate history in Central Europe: a case study from the Klinge section (Lusatia, eastern Germany). Review of Palaeobotany and Palynology 151, 7278.CrossRefGoogle Scholar
Pisias, N.G., Martinson, D.G., Moore, T.C. Jr., Shackleton, H.J., Prell, W., Hays, J, Boden, G., 1984. High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geology 56, 119136.CrossRefGoogle Scholar
Reille, M., Beaulieu, J.-L. de, 1988. History of the Würm and Holocene vegetation in western Velay (Massif Central, France): A comparison of pollen analysis from three corings at Lac du Bouchet. Review of Palaeobotany and Palynology 54, 233248.CrossRefGoogle Scholar
Reille, M., Beaulieu, J.-L. de, Svobodova, H., Andrieu-Ponel, V., Goeury, C., 2000. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). Journal of Quaternary Science 15, 665685.3.0.CO;2-G>CrossRefGoogle Scholar
Rychel, J., Karasiewicz, M.T., Krześlak, I., Marks, L., Noryśkiewicz, B., Woronko, B., 2014. Paleogeography of the environment in north-eastern Poland recorded in an Eemian sedimentary basin, based on the example of the Jałówka site. Quaternary International 328–329, 6073.CrossRefGoogle Scholar
Sánchez-Goñi, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, 123137.CrossRefGoogle Scholar
Sánchez-Goñi, M.F., Loutre, M.F., Crucifix, M., Peyron, O., Santol, L., Duprat, J., Malaizé, , Turon, J.-L., Peypouquet, J.-P., 2005. Increasing vegetation and climate gradient in Western Europe over the last glacial inception (122–110 ka): data model comparison. Earth and Planetary Science Letters 231, 111130.CrossRefGoogle Scholar
Sánchez Goñi, M.F., 2007. Introduction to climate and vegetation in Europe during MIS 5. In: Sirocko, F., Claussen, M., Sánchez Goñi, M. F., Litt, T. (Eds.), The Climate of Past Interglacials. Elsevier, Amsterdam, pp. 197205.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., 2008. Contrasting impacts of Dansgaard Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Turon, J.-L., Eynaud, F., Gendreau, S., 2000. European climatic response to millennial-scale climatic changes in the atmosphere–ocean system during the Last Glacial period. Quaternary Research 54, 394403.CrossRefGoogle Scholar
San'ko, A.F., 1987. Neoplejstocen severo-vostočnoj Belorussii i smenyh rajono RSFSR. Nauka i Technika, Minsk, p. 178.Google Scholar
Satkunas, J., Grigiene, A., 2012. Eemian-Weichselian palaeoenvironmental record from the Mickunai glacial depression (Eastern Lithuania). Geologija 54, 3551.CrossRefGoogle Scholar
Satkunas, J., Grigiene, A., Guobyte, R., Marcinkevičius, V., Račkauskas, V., 1997. Upper Pleistocene stratigraphy based on data from Smalvos and Dysnai localities, North-Eastern Lithuania. Geologija 22, 2635.Google Scholar
Satkunas, J., Grigiene, A., Robertsson, A.-M., 1998. An Eemian-Middle Weichselian sequence from the Jonionys site, Southern Lithuania. Geologija 25, 8291.Google Scholar
Satkunas, J., Grigiene, A., Velichkevich, F., Robertsson, A.-M., Sandgren, P., 2003. Upper Pleistocene stratigraphy at the Medininkai site, eastern Lithuania: a continuous record of the Eemian Weichselian sequence. Boreas 32, 627641.CrossRefGoogle Scholar
Savčenko, I.E., Pavlovskaya, I., 1999. Muravian (Eemian) and Early Poozerian (Early Weichselian) sequence at Azarichi section (Eastern Belarus). Acta Palaeobotanica 2, 523527.Google Scholar
Savčenko, I.E., Rylova, T.B., 2001. Biostratigrafičeskoe rasčlenenie muravinskih i nižnepoozerskih otloženij plejstocena na territorii Belarusi. Doklady NAN Belarusi 45, 9398.Google Scholar
Seelos, K., Sirocko, F., 2007. Abrupt cooling events at the very end of the Last Interglacial. In: Sirocko, F., Claussen, M., Sánchez Goni, M.F., Litt, T. (Eds.), The Climate of Past Interglacials. Elsevier, Amsterdam, pp. 207231.CrossRefGoogle Scholar
Shackleton, N.J., 1969. The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society of London B 6, 183190.Google Scholar
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2002. The classic marine isotope substage 5e. Quaternary Research 58, 1416.CrossRefGoogle Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2003. Marine Isotope Substage 5e and the Eemian interglacial. Global and Planetary Change 3, 151155.CrossRefGoogle Scholar
Shalaboda, V.L., 2001. Characteristic features of Muravian (Eemian) pollen successions from various regions of Belarus. Acta Palaeobotanica 41, 2741.Google Scholar
Sier, M.J., Peeters, J., Dekkers, M.J., Pares, J.M., Chang, L., Busschers, F.S., Cohen, K.M., Wallinga, J., Bunnik, F.P.M., Roebroeks, W., 2015. The Blake Event recorded near the Eemian type locality—a diachronic onset of the Eemian in Europe. Quaternary Geochronology 28, 1228.CrossRefGoogle Scholar
Sirocko, F., Seelos, K., Schaber, K., Rein, B., Dreher, F., Diehl, M., Lehné, R., Jäger, K., Krbetschek, M., Degering, D., 2005. A late Eemian aridity pulse in central Europe during the last glacial inception. Nature 436, 833836.CrossRefGoogle ScholarPubMed
Striegler, U., 1986. Zum Eem-Interglazial von Klinge. In: Cepek, A.G. (Ed.), Kurzreferate und Exkursionsführer “25 Jahre Arbeitskreis Quartärgeologie” der GGW vom 10. bis 13. Juli 1986 in Berlin, pp. 3940.Google Scholar
Szafer, W., Kulczyński, S., Pawłowski, B., 1986. Rośliny polskie. PWN, Warsaw.Google Scholar
Turner, C., 2002. Problems of the Duration of the Eemian Interglacial in Europe North of the Alps. Quaternary Research 58, 4548.CrossRefGoogle Scholar
Tzedakis, P.C., Frogley, M.R., Heaton, T.H.E., 2003. Last Interglacial conditions in southern Europe: evidence from Ioannina, northwest Greece. Global and Planetary Change 36, 157170.CrossRefGoogle Scholar
Tzedakis, P.C., Lawson, I.T., Frogley, M.R., Hewitt, G.M., Preece, R.C., 2002. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, 20442047.CrossRefGoogle Scholar
Velichko, A.A., Novenko, E.Y., Pisareva, V.V., Zelikson, E.M., Boettger, T., Junge, F.W., 2005. Vegetation and climate changes during Eemian in Central and East Europe: comparative analysis of pollen data. Boreas 34, 207219.CrossRefGoogle Scholar
Walanus, A., 1995. Pollen data in space and time—local approach. INQUA–Commission for the Study of the Holocene, Working Group on Data-Handling Methods, Newsletter 13, January.Google Scholar
Walanus, A., Nalepka, D., 1999. POLPAL Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Palaeobotanica Suppl. 2, 659661.Google Scholar
Wegmüller, S., 1986. Recherches palynologiques sur les charbons feuilletés de la region de Gondiswil/Ufhusen (Plateau Suisse). Bulletin de l'Association française pour l'Etude du Quaternaire 1/2, 2934.CrossRefGoogle Scholar
Welten, M., 1982. Pollenanalytische Untersuchungen im Jüngeren Quartär des nördlichen Alpenvorlandes der Schweiz. Beiträge zur geologischen Karte der Schweiz, Neue Folge 156Google Scholar
Welten, M., 1981. Gletscher und Vegetation im Lauf der letzten hunderttausend Jahre. Vorläufige Mitteilung. In: Kasser, P. (Ed.), Gletscher- und Klimasymposium, 6–8 Oktober 1978 in Brig. Jahrbuch der Schweizerischen Naturforschenden Gesellschaft, Wissenschaftlicher Teil. Birkhäuser Verlag, Basel/Boston/Stuttgart, pp. 518.Google Scholar
Woillard, G.M., 1978. Grande Pile peat bog: a continuous pollen record for the last 140000 years. Quaternary Research 9, 121.CrossRefGoogle Scholar
Woronko, B., Rychel, J., Karasiewicz, M.T., Kupryjanowicz, M., Adamczyk, A., Fiłoc, M., Marks, L., Krzywicki, T., Pochocka-Szwarc, K., 2018. Post-Saalian transformation of dry valleys in the Eastern Europe: An example from NE Poland. Quaternary International 467A, 161177.CrossRefGoogle Scholar
Wulf, S., Keller, J., Paterne, M., Mingram, J., Lauterbach, S., Opitz, S., Sottili, G., et al. , 2012. The 100–133 ka record of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio. Quaternary Science Reviews 58, 104123.CrossRefGoogle Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Part 1: Eemian and Early Weichselian. Mededelingen Geologische Stichting NS 14, 1545.Google Scholar
Zagwijn, W.H., 1989. Vegetation and climate during warmer intervals in the Late Pleistocene of Western and Central Europe. Quaternary International 3, 5767.CrossRefGoogle Scholar
Zagwin, W.H., 1996. An analysis of Eemian climate in Western Europe and central Europe. Quaternary Science Reviews 15, 451469.CrossRefGoogle Scholar