Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T05:00:44.086Z Has data issue: false hasContentIssue false

Ecohydrological controls on apparent rates of peat carbon accumulation in a boreal bog record from the Hudson Bay Lowlands, northern Ontario, Canada

Published online by Cambridge University Press:  29 April 2021

Marissa A. Davies
Affiliation:
Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada
Jerome Blewett
Affiliation:
Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, and Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
B. David A. Naafs
Affiliation:
Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, and Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
Sarah A. Finkelstein*
Affiliation:
Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada
*
*Corresponding author email address:[email protected] (S.A. Finkelstein).

Abstract

A multiproxy Holocene record from a bog in the Hudson Bay Lowlands, northern Ontario, Canada, was used to evaluate how ecohydrology relates to carbon accumulation. The study site is located at a somewhat higher elevation and on coarser grained deposits than the surrounding peatlands. This promotes better drainage and thus a slower rate of carbon accumulation relative to sites with similar initiation age. The rate of peat vertical accretion was initially low as the site transitioned from a marsh to a rich fen. These lower rates took place during the warmer temperatures of the Holocene thermal maximum, confirming the importance of hydrological controls limiting peat accretion at the local scale. Testate amoebae, pollen, and plant macrofossils indicate a transition to a poor fen and then a bog during the late Holocene, as the carbon accumulation rate and reconstructed water table depth increased. The bacterial membrane lipid biomarker indices used to infer paleotemperature show a summer temperature bias and appear sensitive to changes in peat type. The bacterial membrane lipid biomarker pH proxy indicates a rich to a poor fen and a subsequent fen to bog transition, which are supported by pollen, macrofossil, and testate amoeba records.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amesbury, M.J., Booth, R.K., Roland, T.P., Bunbury, J., Clifford, M.J., Charman, D.J., Elliot, S., et al. , 2018. Towards a Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quaternary Science Reviews 201, 483500.CrossRefGoogle Scholar
Andrews, J.T., Peltier, W.R., 1989. Quaternary geodynamics in Canada. In: Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa. pp. 541572.CrossRefGoogle Scholar
Bajc, A.F., Yeung, K.H., 2017. Surficial Geology of the Smoky Falls Area Southwest, Northern Ontario. Map P3754, Preliminary Map Series. Ministry of Energy, Northern Development and Mines, Sudbury, Ontario, Canada.Google Scholar
Barnett, P.J., Yeung, K.H., McCallum, J.D., 2012. Surficial Geology of the Smoky Falls Area Northeast, Northern Ontario. Map P3748, Preliminary Map Series. Ministry of Energy, Northern Development and Mines, Sudbury, Ontario, Canada.Google Scholar
Belyea, L.R., Baird, A.J., 2006. Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecological Monographs 76, 299322.CrossRefGoogle Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.CrossRefGoogle Scholar
Bennett, P.C., Siegel, D.I., Hill, B.M., Glaser, P.H., 1991. Fate of silicate minerals in a peat bog. Geology 19, 328331.2.3.CO;2>CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Blewett, J., Naafs, B.D.A., Gallego-Sala, A.V., Pancost, R.D., 2020. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands. Organic Geochemistry 148, 104080. https://doi:10.1016/j.orggeochem.2020.104080.CrossRefGoogle Scholar
Blundell, A., Barber, K., 2005. A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quaternary Science Reviews 24, 12611277.CrossRefGoogle Scholar
Booth, R.K., 2008. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. Journal of Quaternary Science 23, 4357.CrossRefGoogle Scholar
Booth, R.K., Lamentowicz, M., Charman, D.J., 2010. Preparation and analysis of testate amoebae in peatland environmental studies. Mires and Peat 7, 2. http://www.mires-and-peat.net/pages/volumes/map07/map0702.php.Google Scholar
Bragazza, L., Buttler, A., Robroek, B.J.M., Albrecht, R., Zaccone, C., Jassey, V.E.J., Signarbieux, C., 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. Global Change Biology 22, 41144123.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bunbury, J., Finkelstein, S.A., Bollmann, J., 2012. Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quaternary Research 78, 275284.CrossRefGoogle Scholar
Bysouth, D., Finkelstein, S.A., 2020. Linking testate amoeba assemblages to paleohydrology and ecosystem function in Holocene peat records from the Hudson Bay Lowlands, Ontario, Canada. The Holocene 31, 457468.CrossRefGoogle Scholar
Carcaillet, C., Richard, P.J.H., 2000. Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Climate Dynamics 16, 549559.CrossRefGoogle Scholar
Chambers, F.M., Beilman, D.W., Yu, Z., 2010. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, 7. http://www.mires-and-peat.net/pages/volumes/map07/map0707.php.Google Scholar
Charman, D.J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M., Christen, J.A., et al. , 2013. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929944.CrossRefGoogle Scholar
Charman, D.J., Hendon, D., Woodland, W., 2000. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats. Quaternary Research Association, London.Google Scholar
De Jonge, C., Hopmans, E.C., Zell, C.I., Kim, J.-H., Schouten, S., Sinninghe Damsté, J.S., 2014. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta 141, 97112.CrossRefGoogle Scholar
Dyke, A.S., Moore, A., Robertson, L., 2003. Deglaciation of North America. Geological Survey of Canada Open File 1574. Natural Resources Canada, Ottawa.CrossRefGoogle Scholar
Ecological Stratification Working Group, 1995. Terrestrial Ecozones and Ecoregions of Canada: A National Ecological Framework for Canada. 1:7500000. Agriculture and Agri-Food and Environment Canada, Ottawa.Google Scholar
Edwards, T.W.D., Wolfe, B.B., MacDonald, G.M., 1996. Influence of changing atmospheric circulation on precipitation δ18O-temperature relations in Canada during the Holocene. Quaternary Research 46, 211218.CrossRefGoogle Scholar
Elmes, M.C., Price, J.S., 2019. Hydrologic function of a moderate-rich fen watershed in the Athabasca oil sands region of the western Boreal plain, northern Alberta. Journal of Hydrology 570, 692704.CrossRefGoogle Scholar
Friel, C.E., Finkelstein, S.A., Davis, A.M., 2014. Relative importance of hydrological and climatic controls on Holocene paleoenvironments inferred using diatom and pollen records from a lake in the central Hudson Bay Lowlands, Canada. The Holocene 24, 295306.CrossRefGoogle Scholar
Frolking, S., Roulet, N.T., 2007. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology 13, 10791088.CrossRefGoogle Scholar
Gallego-Sala, A.V., Charman, D.J., Brewer, S., Page, S.E., Prentice, I.C., Friedlingstein, P., Moreton, S., et al. , 2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change 8, 907913.CrossRefGoogle Scholar
Glaser, P.H., Hansen, B.C.S., Siegel, D.I., Reeve, A.S., Morin, P.J., 2004. Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. Journal of Ecology 92, 10361053.CrossRefGoogle Scholar
Gorham, E., 1991. Northern peatlands: role in the carbon-cycle and probable responses to climatic warming. Ecological Applications 1, 182195.CrossRefGoogle ScholarPubMed
Government of Canada, 2020. Canadian Climate Normals: 1981–2010 Climate Normals and Averages (accessed October 15, 2020). https://climate.weather.gc.ca/climate_normals/index_e.html.Google Scholar
Government of Ontario, 2020. Provincial Digital Elevation Model: North (CGVD28). Ontario Ministry of Natural Resources and Forestry, Ottawa.Google Scholar
Hargan, K.E., Finkelstein, S.A., Rühland, K.M., Packalen, M.S., Dalton, A.S., Paterson, A.M., Keller, W., Smol, J.P., 2020. Post-glacial lake development and paleoclimate in the central Hudson Bay Lowlands inferred from sediment records. Journal of Paleolimnology 64, 2546.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 101110.CrossRefGoogle Scholar
Holmquist, J.R., MacDonald, G.M., 2014. Peatland succession and long-term apparent carbon accumulation in central and northern Ontario, Canada. Holocene 24, 10751089.CrossRefGoogle Scholar
Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2016. The effect of improved chromatography on GDGT-based palaeoproxies. Organic Geochemistry 93, 16.CrossRefGoogle Scholar
Ise, T., Dunn, A.L., Wofsy, S.C., Moorcroft, P.R., 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience 1, 763766.CrossRefGoogle Scholar
Karmakar, M., Laird, K.R., Cumming, B.F., 2015. Diatom-based evidence of regional aridity during the mid-Holocene period in boreal lakes from northwest Ontario (Canada). The Holocene 25, 166177.CrossRefGoogle Scholar
Kettles, I.M., Garneau, M., Jetté, H., 2000. Macrofossil, Pollen, and Geochemical Records of Peatlands in the Kinosheo Lake and Detour Lake Areas, Northern Ontario. Natural Resources Canada, Ottawa.CrossRefGoogle Scholar
Klinger, L.F., Short, S.K., 1996. Succession in the Hudson Bay lowland, northern Ontario, Canada. Arctic and Alpine Research 28, 172183.CrossRefGoogle Scholar
Laiho, R., 2006. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry 38, 20112024.CrossRefGoogle Scholar
Lamarre, A., Magnan, G., Garneau, M., Boucher, E., 2013. A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quaternary International 306, 8896.CrossRefGoogle Scholar
Lamentowicz, M., Galka, M., Milecka, K., Tobolski, K., Lamentowicz, B., Fialkiewicz-Koziel, B., Blaauw, M., 2013. A 1300-year multi-proxy, high-resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change. Journal of Quaternary Science 28, 582594.CrossRefGoogle Scholar
Lamentowicz, M., Galka, M., Rusińska, A., Sobczyński, T., Owsianny, P.M., Lamentowicz, M., 2011. Testate amoeba (Arcellnida, Euglyphida) ecology along a poor-rich gradient in fens of western Poland. International Review of Hydrobiology 96, 356380.CrossRefGoogle Scholar
Lévesque, P.E.M., Dinel, H., Larouche, A., 1988. Guide to the Identification of Plant Macrofossils in Canadian Peatlands. Ministry of Supply and Services Canada, Ottawa.CrossRefGoogle Scholar
Loisel, J., Bunsen, M., 2020. Abrupt fen-bog transition across southern Patagonia: timing, causes, and impacts on carbon sequestration. Frontiers in Ecology and Evolution 8. https://doi.org/10.3389/fevo.2020.00273.CrossRefGoogle Scholar
Loisel, J., Gallego-Sala, A.V., Amesbury, M.J., Magnan, G., Anshari, G., Beilman, D.W., Benavides, J.C., et al. , 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change 11, 7077.CrossRefGoogle Scholar
Loisel, J., Garneau, M., 2010. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: potential and limits of multi-proxy archives. Palaeogeography Palaeoclimatology Palaeoecology 291, 493533.CrossRefGoogle Scholar
Loisel, J., Yu, Z., Beilman, , Camill, P., Alm, J., Amesbury, M.J., Anderson, D., et al. , 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24, 10281042.CrossRefGoogle Scholar
Mann, M.E., Zhang, Z.H., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F.B., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
Martini, I. P., 2006, The cold-climate peatlands of the Hudson Bay Lowland, Canada: brief overview of recent work, in Martini, I. P., Martínez Cortizas, A., and Chesworth, W., eds., Peatlands: Evolution and Records of Environmental and Climate Changes: Elsevier, Amsterdam, pp. 5383.CrossRefGoogle Scholar
Mauquoy, D., Hughes, P.D.M., Van Geel, B., 2010. A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7, 6. http://www.mires-and-peat.net/pages/volumes/map07/map0706.php.Google Scholar
McAndrews, J.H., Berti, A.A., Norris, G., 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region. Royal Ontario Museum, Toronto.CrossRefGoogle Scholar
McAndrews, J. H., Riley, J. L., and Davis, A. M., 1982, Vegetation history of the Hudson Bay Lowland: A postglacial pollen diagram from the Sutton Ridge: Le Naturaliste Canadien 109, 597608.Google Scholar
McLaughlin, J., Packalen, M., Shrestha, B., 2018. Assessment of the Vulnerability of Peatland Carbon in the Albany Eodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change. Science and Research Branch, Ontario Ministry of Natural Resources and Forestry, Peterborough, Canada.Google Scholar
Miola, A., 2012. Tools for non-pollen palynomorphs (NPPs) analysis: a list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology 186, 142161.CrossRefGoogle Scholar
Moos, M.T., Cumming, B.F., 2011. Changes in the parkland-boreal forest boundary in northwestern Ontario over the Holocene. Quaternary Science Reviews 30, 12321242.CrossRefGoogle Scholar
Morris, P.J., Swindles, G.T., Valdes, P.J., Ivanovic, R.F., Gregoire, L.J., Smith, M.W., Tarasov, L., Haywood, A.M., Bacon, K.L., 2018. Global peatland initiation driven by regionally asynchronous warming. Proceedings of the National Academy of Sciences 115, 48514856.CrossRefGoogle ScholarPubMed
Naafs, B.D.A., Inglisab, G.N., Zheng, Y., Amesbury, M.J., Biestere, H., Bindler, R., Blewett, J., et al. , 2017. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta 208, 285301.CrossRefGoogle Scholar
Naafs, B.D.A., Inglis, G.N., Blewett, J., McClymont, E.L., Laurentano, V., Xie, S.C., Evershed, R.P., Pancost, R.D., 2019. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review. Global and Planetary Change 179, 5779.CrossRefGoogle Scholar
Naafs, B.D.A., Rohrssen, M., Inglis, G.N., Lähteenoja, O., Feakins, S.J., Collinson, M.E., Kennedy, E.M., et al. , 2018. High temperatures in the terrestrial mid-latitudes during the early Palaeogene. Nature Geoscience 11, 766771.CrossRefGoogle Scholar
Nichols, J.E., Peteet, D.M., Moy, C.M., Castaneda, I.S., McGeachy, A., Perez, M., 2014. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques. The Holocene 24, 11461155.CrossRefGoogle Scholar
Nichols, J., Peteet, D., 2019. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nature Geoscience 12, 917921.CrossRefGoogle Scholar
Norris, A.W., 1986. Review of Hudson Platform Paleozoic stratigraphy and biostratigraphy. In: Martini, I.P. (Ed.), Canadian Inland Seas. Elsevier, Amsterdam, pp. 1742.CrossRefGoogle Scholar
Ogden, C.G., 1987. The fine structure of the shell of Pyxidicula operculata, an aquatic testate amoeba (Rhizopoda). Archiv für Protistenkunde 133, 157164.CrossRefGoogle Scholar
Ogden, C.G., Hedley, R.H., 1980. An Atlas of Freshwater Testate Amoebae. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
O'Reilly, B.C., Finkelstein, S.A., Bunbury, J., 2014. Pollen-derived paleovegetation reconstruction and long-term carbon accumulation at a fen site in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Arctic, Antarctic, and Alpine Research 46, 618.CrossRefGoogle Scholar
Packalen, M.S., Finkelstein, S.A., 2014. Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada. The Holocene 24, 10631074.CrossRefGoogle Scholar
Packalen, M.S., Finkelstein, S.A., McLaughlin, J.W., 2014. Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation. Nature Communications 5, 4078. https://doi.org/10.1038/ncomms5078.CrossRefGoogle ScholarPubMed
Packalen, M.S., Finkelstein, S.A., McLaughlin, J.W., 2016. Climate and peat type in relation to spatial variation of the peatland carbon mass in the Hudson Bay Lowlands, Canada. Journal of Geophysical Research-Biogeosciences 121, 11041117.CrossRefGoogle Scholar
Pals, J.P., Vangeel, B., Delfos, A., 1980. Paleoecological studies in the Klokkeweel Bog near Hoogkarspel (prov. of Noord-Holland). Review of Palaeobotany and Palynology 30, 371418.CrossRefGoogle Scholar
Payette, S., Filion, L., 1993. Holocene water-level fluctuations of a subarctic lake at the tree line in northern Québec. Boreas 22, 714.CrossRefGoogle Scholar
Peltier, W.R., Argus, D.F., Drummond, R., 2015. Space geodesy constrains ice-age terminal degraciation: the global ICE-6G_C (VM5a) model. Journal of Geophyscial Research: Solid Earth 120, 450487.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Renssen, H., Seppä, H., Heiri, O., Roche, D.M., Goosse, H., Fichefet, T., 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 411414.CrossRefGoogle Scholar
Riley, J.L., 2003. Flora of the Hudson Bay Lowland and its Postglacial Origin. National Research Council of Canada, Ottawa.Google Scholar
Riley, J.L., 2011. Wetlands of the Ontario Hudson Bay Lowland: A Regional Overview. Nature Conservancy of Canada, Toronto.Google Scholar
Rydin, H., Jeglum, J.K., 2013. The Biology of Peatlands. 2nd ed. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Sims, R.A., Riley, J.L., Jeglum, J.K., 1979. Vegetation, Flora, and Vegetational Ecology of the Hudson Bay Lowland: A Literature Review and Annotated Bibliography, Report 0-X-297. Canadian Forestry Service, Sault Ste. Marie, Canada.Google Scholar
Sinninghe Damsté, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C.T., Geenevasen, J.A.J., 2002. Crenarchaeol: the charcteristic core glycerol dibiphytanyl glycerol tetraether memberane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43, 16411651.CrossRefGoogle Scholar
Sullivan, M.E., Booth, R.K., 2011. The potential influence of short-term environmental variability on the composition of testate amoeba communities in sphagnum peatlands. Microbial Ecology 62, 8093.CrossRefGoogle ScholarPubMed
Swindles, G.T., Holden, J., Raby, C.L., Turner, T.E., Blundell, A., Charman, D.J., Menberu, M.W., Kløve, B., 2015. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Quaternary Science Reviews 120, 107117.CrossRefGoogle Scholar
van Bellen, S., Dallaire, P.L., Garneau, M., Bergeron, Y., 2011a. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Global Biogeochemical Cycles 25, GB2016. htps://doi.org/10.1029/2010gb003877.CrossRefGoogle Scholar
van Bellen, S., Garneau, M., and Booth, R. K., 2011b. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohydrological change: The Holocene 21, 12171231.CrossRefGoogle Scholar
van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1120.CrossRefGoogle Scholar
van Geel, B., Bohncke, S.J.P., Dee, H., 1980. A palaeoecological study of an upper late glacial and Holocene sequence from “de borchert”, The Netherlands. Review of Palaeobotany and Palynology 31, 367448.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., 2009. Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. Journal of Climate 22, 316330.CrossRefGoogle Scholar
Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C., Damste, J.S.S., 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta 71, 703713.CrossRefGoogle Scholar
Weijers, J.W.H., Steinmann, P., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2011. Bacterial tetraether membrane lipids in peat and coal: testing the MBT–CBT temperature proxy for climate reconstruction. Organic Geochemistry 42, 477486.CrossRefGoogle Scholar
Williams, J.W., Grimm, E.C., Blois, J.L., Charles, D.F., Davis, E.B., Goring, S.J., Graham, R.W., et al. , 2018. The Neotoma Paleoecology Database: a multiproxy, international, community-curated data resource. Quaternary Research 89, 156177.CrossRefGoogle Scholar
Yang, H., Xiao, W., Słowakiewicz, M., Ding, W., Ayari, A., Dang, X., Pei, H., 2019. Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: implications for the use of isoprenoidal GDGTs as environmental tracers. Organic Geochemistry 128, 4256.CrossRefGoogle Scholar
Yeloff, D., Charman, D., van Geel, B., Mauquoy, D., 2007. Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils. Review of Palaeobotany and Palynology 146, 102145.CrossRefGoogle Scholar
Yu, Z.C., Loisel, J., Brosseau, D.P., Beilman, D.W., Hunt, S.J., 2010. Global peatland dynamics since the last glacial maximum. Geophysical Research Letters 37, 5. https//doi.org/10.1029/2010gl043584.CrossRefGoogle Scholar
Zheng, Y., Fang, Z., Fan, T., Liu, Z., Wang, Z., Li, Q., Pancost, R.D., Naafs, B.D.A., 2020. Operation of the boreal peatland methane cycle across the past 16 k.y. Geology 48, G46709.46701. https://doi.org/10.1130/G46709.1.CrossRefGoogle Scholar
Zheng, Y., Li, Q., Wang, Z., Naafs, B.D.A., Yu, X., Pancost, R.D., 2015. Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian monsoon. Organic Geochemistry 87, 8695.CrossRefGoogle Scholar
Zheng, Y., Pancost, R.D., Liu, X., Wang, Z., Naafs, B.D.A., Xie, X., Liu, Z., Yu, X., Yang, H., 2017. Atmospheric connections with the North Atlantic enhanced the deglacial warming in northeast China. Geology 45, 10311034.CrossRefGoogle Scholar
Zheng, Y., Pancost, R.D., Naafs, B.D.A., Li, Q., Liu, Z., Yang, H., 2018. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene. Earth and Planetary Science Letters 493, 3646.CrossRefGoogle Scholar
Supplementary material: File

Davies et al. supplementary material

Davies et al. supplementary material

Download Davies et al. supplementary material(File)
File 901.9 KB