Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T01:58:58.008Z Has data issue: false hasContentIssue false

Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya)

Published online by Cambridge University Press:  20 January 2017

Georg Miehe*
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Sabine Miehe
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Frank Schlütz
Affiliation:
Palynology and Climate Dynamics, University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
*
*Corresponding author. Email Address:[email protected]

Abstract

The vegetation of the treeline ecotone of the southern declivity of arid High Asia (Hindu Kush, northern areas of Pakistan; Himalaya, northern central Nepal) is dominated by hedgehog-like open dwarf shrublands of thorny cushions. Since climatically sensitive ecotones are always also sensitive to human impact, the question arises whether the current lack of forests is a result of the Subboreal climate decline or of human impact. Due to inadequate knowledge of the pollen flora and of ecological indicator values of the plants, pollen analyses in High Asia have mainly been limited to the regional verification of globally known climatic impulses. However, the role of human impact on regional vegetation patterns has been widely neglected. We postulate that today's open dwarf shrublands replace woodlands and forests. Isolated vigorous juniper trees and successful reforestation appear to confirm our hypothesis. An abrupt decline of Pinus forests before 5700 and 5400 ka cal yr BP can be demonstrated. As the first indicator pollen of human impact appeared at both sites synchronous with the forest pollen decline, we infer human impact to be a more decisive cause for this environment change superimposing the effects of a climatic deterioration. The forests were displaced by open dwarf shrublands.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldenderfer, M.S. Moving up in the world. American Scientist 91, (2003). 542549.Google Scholar
Baade, J., and Mäusbacher, R. Environmental change and settlement history, preliminary results from the Mukthinath valley, Inner Himalaya, Nepal. Marburger Geographische Schriften 135, (2000). 4052.Google Scholar
Behre, K.E. The interpretations of anthropogenic indicator in pollen diagrams. Pollen and Spores 23, (1981). 225245.Google Scholar
Bellezza, J.V., (2008). Zhang Zhung. Foundation of civilization in Tibet. Österreichische Akademie der Wissenschaften, Philosophisch-Historische Klasse 368. Wien.Google Scholar
Beug, H.-J., and Miehe, G. Vegetation history and human impact in the eastern central Himalaya (Langtang and Helambu, Nepal). Dissertationes Botanicae 318, (1999). Google Scholar
Bräuning, A., and Mantwill, B. Summer temperatures and monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings. Geophysical Research Letters 31, (2004). L24205 Google Scholar
Brain, C.K., and Sillen, A. Evidence from the Swartkranscave for the earliest use of fire. Nature 336, (1988). 464466.Google Scholar
Brantingham, J.P., Gao Xing, , Olsen, J.W., Ma Haizhou, , Rhode, D., Zhang Haiying, , and Madsen, D.B. A short chronology for the peopling of the Tibetan Plateau. Developments in Quaternary Science 9, (2007). 129150.Google Scholar
Burney, D.A. Late Holocene environmental changes in arid southwestern Madagascar. Quaternary Research 40, (1993). 98106.Google Scholar
Burney, L.P., and Burney, D.A. Charcoal stratigraphies for Kaua'i and the timing of human arrival. Pacific Science 57, (2003). 211226.Google Scholar
Corvinus, G. The prehistory of Nepal. Journal of the Nepal Research Centre 10, (1996). 125.Google Scholar
Corvinus, G. Homo erectus in East and Southeast Asia, and the questions of the age of the species and its association with stone artifacts, with special attention to handaxe-like tooly. Quaternary International 117, (2004). 141151.Google Scholar
Dechamps, R. Evidence of bush fires during the Plio-Pleistocene in Africa (Omo and Sahabi) with the aid of fossil wood. Palaeoecology of Africa 16, (1984). 291295.Google Scholar
Diamond, J. Guns, Germs and Steel. The Fate of Human Societies. (1997). Norton, New York.Google Scholar
Dobremez, J.F. Le Népal. Écologie et Biogéographie. (1976). CRNS, Paris.Google Scholar
Domrös, M., Peng Gongbing, The Climate of China. (1988). Springer, Berlin.Google Scholar
Driesch, v.d.A., Manhart, H., and Schmitt, B. Archäozoologische Untersuchungen in der mittelalterlichen Siedlung von Khyinga-Khalun, Distrikt Mustang/Nepal. Beiträge zur Allgemeinen Vergleichenden Archäologie 20, (2000). 45108.Google Scholar
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., and Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. (1991). Goltze, Göttingen.Google Scholar
Erdtman, G. The acetolysis method. Svensk Botanisk Tidskrift 54, (1960). 561564.Google Scholar
Farjon, A. A Monograph of Cupressaceae and Sciadopitys. (2005). Royal Botanic Gardens, Kew.Google Scholar
Frenzel, B. Über Probleme der holozänen Vegetationsgeschichte Osttibets. Göttinger Geographische Abhandlungen 95, (1994). 143166.Google Scholar
Freitag, H. Die natürliche Vegetation des südostspanischen Trockengebietes. Botanisches Jahrbuch 91, (1972). 147308.Google Scholar
Gaillard, M.J. Pollen methods and studies/archaeological applications. Elias, S.A. Encyclopedia of Quaternary Science. (2007). Elsevier, Amsterdam. 25702595.Google Scholar
Gams, H. Die Tragacantha-Igelheiden der Gebirge um das Kaspische, Schwarze und Mittelländische Meer. Veröffentlichungen des Geobotanischen Instituts, Stiftung Rübel 31, (1956). 217243.Google Scholar
Hara, H., Chater, A.O., and Williams, L.H.J. An Enumeration of the Flowering Plants of Nepal. (1978–82). British Museum (Natural History), London. 3 vols, Google Scholar
Henning, I. Die La Sal Mountains, Utah. Ein Beitrag zur Geoökologie der Colorado Plateau Provinz und zur vergleichenden Hochgebirgsgeographie. Abhandlungen Akademie der Wissenschaften und der Literatur Mainz. Mathematisch-Naturwissenschaftliche Klasse, Jahrgang 1975, (1972). 2 Google Scholar
Henning, I. Hydroklima und Klimavegetation der Kontinente. Münstersche Geographische Arbeiten 37, (1994). Google Scholar
Herzschuh, U., Kürschner, H., and Mischke, S. Temperature variability and vertical vegetation belt shifts during the last ∼ 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quaternary Research 66, (2006). 133146.Google Scholar
Hüttel, H.-G. Archäologische Siedlungsforschung im Hohen Himalaya. Die Ausgrabungen der KAVA im Muktinath-Tal/Nepal 1991–1992. Beiträge zur Allgemeinen Vergleichenden Archäologie 14, (1994). 47163.Google Scholar
Hüttel, H.-G. Archäologische Siedlungsforschung im Hohen Himalaya. Die Ausgrabungen der KAVA im Muktinath-Tal/Nepal 1994–1995. Beiträge zur Allgemeinen Vergleichenden Archäologie 17, (1997). 764.Google Scholar
Hüttel, H.-G., and Paap, I. On the chronology and periodization of Khyingia settlement mound. Beiträge zur Allgemeinen Vergleichenden Archäologie 18, (1998). 626.Google Scholar
Kershaw, A.P. Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles. Nature 322, (1986). 4749.Google Scholar
Knörzer, K.-H. 3000 years of agriculture in a valley of the High Himalayas. Vegetation History and Archaeobotany 9, (2000). 219222.Google Scholar
Körner, C. Alpine Plant Life. (1999). Springer, Berlin.Google Scholar
Kreutzmann, H. Ethnizität im Entwicklungsprozess. Die Wakhi in Hochasien. (1996). Reimer, Berlin.Google Scholar
Kriechbaum, M. Flora, Vegetation und Landnutzung des Muktinath-Tales (Mustang, Nepal) als Beziehungsmuster von naturräumlicher Ausstattung und menschlicher Gestaltung im Zentralhimalaya. Dissertationes Botanicae 369, (2002). Google Scholar
Kürschner, H. Die syntaxonomische Stellung der subalpinen Dornpolsterformationen am Westrand SW-Asiens. Phytocoenologia 14, (1986). 381397.Google Scholar
Lauer, W., Rafiqpoor, M.D., and Frankenberg, P. Die Klimate der Erde. Eine Klassifikation auf ökophysiologischer Grundlage der realen Vegetation. Erdkunde 50, (1996). 275300.Google Scholar
Miehe, G. Vegetationsgeographische Untersuchungen im Dhaulagiri- und Annapurna-Himalaya. Dissertationes Botanicae 66, 1 (1982). 2 Google Scholar
Miehe, G., Winiger, M., Böhner, J., Zhang Yili, The climatic diagram map of High Asia. Purpose and concepts. Erdkunde 56, (2001). 9497.CrossRefGoogle Scholar
Miehe, G., Miehe, S., Koch, K., and Will, M. Sacred forests in Tibet: using Geographical Information Systems for forest rehabilitation. Mountain Research and Development 23, (2003). 324328.Google Scholar
Miehe, G., Miehe, S., Kaiser, K., Reudenbach, C., Behrendes, L., La Duo, Schlütz, F., in press. How old is Pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Miehe, S., Cramer, T., Jacobsen, J.P., and Winiger, M. Humidity conditions in the Western Karakorum as indicated by climatic data and corresponding distribution patterns of the montane and alpine vegetation. Erdkunde 50, (1996). 190204.CrossRefGoogle Scholar
Miehe, G., Miehe, S., Will, M., Opgenoorth, L., La Duo, , Tsering Dorgeh, , and Liu, J.Q. An inventory of forest relics in the pastures of Southern Tibet (Xizang A.R., China). Plant Ecology 194, (2008). 157177.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1999). Blackwell Science, Oxford.Google Scholar
Morgenroth, G., Kerscher, H., Kretschmer, W., Klein, M., Reichel, M., Tully, T., and Wrzosok, I. Improved sample preparation techniques at the Erlangen AMS-facility. Nuclear instruments methods in physics research/B 172, 1 (2000). 416423.Google Scholar
Mueller-Dombois, D., and Ellenberg, H. Aims and Methods of Vegetation Ecology. (1974). Wiley, New York.Google Scholar
Nüsser, M., and Dickoré, W.B. A tangle in the triangle: vegetation map of the eastern Hindu Kush (Chitral, Northern Pakistan). Erdkunde 56, (2002). 3759.Google Scholar
Ogden, J., Basher, L., and McGlone, M. Fire, forest regenerations and links with early human habitations: evidence from New Zealand. Annals of Botany 81, (1998). 687696.CrossRefGoogle Scholar
Peer, T., Millinger, A., Gruber, J.P., Hussain Farrukh, Vegetation and altitudinal zonation in relation to the impact of grazing in the steppe lands of the Hindu Kush Range (N-Pakistan). Phytocoenologia 31, (2001). 477498.Google Scholar
Prentice, C.I., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19, (1992). 117134.Google Scholar
Ren, G. Decline of the mid- to late Holocene forests in China: climatic change or human impact. Journal of Quaternary Science 15, (2000). 273281.Google Scholar
Saijo, K., and Tanaka, S. Paleosols of middle Holocene age in the Thakkhola basin, central Nepal, and their paleoclimatic significance. Journal of Asian Earth Sciences 21, (2002). 323329.CrossRefGoogle Scholar
Schickhoff, K. Verbreitung, Nutzung und Zerstörung der Höhenwälder im Karakorum und angrenzenden Hochgebirgsräumen Nordpakistans. Petermanns Geographische Mitteilungen 139, (1995). 6785.Google Scholar
Schlütz, F., (1999). Palynologische Untersuchungen über die holozäne Vegetations-, Klima- und Siedlungsgeschichte in Hochasien und das Pleistozän in China. Dissertationes Botanices 315.Google Scholar
Schlütz, F., and Lehmkuhl, F. Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic, teleconnections and human history since the middle Holocene. Vegetation History and Archaebotany 16, (2007). 101118.Google Scholar
Schlütz, F., and Zech, W. Palynological investigations on vegetation and climate change in the late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal. Vegetation History and Archaebotany 13, (2004). 8190.Google Scholar
Schuh, D., (1992–93). Introduction. Ancient Nepal 130–133, c-m.Google Scholar
Schuh, D., Bielmeier, R., Cüppers, C., and Schmidt, B. Forschungsbericht über die Exploration der Höhlen des Muktinath-Tales (1986–1987). Zentralasiatische Studien 35, (2006). 107166.Google Scholar
Schweinfurth, H. Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geographische Abhandlungen 20, (1957). Google Scholar
Simons, A., and Schön, W. Cave systems and terrace settlements in Mustang Nepal. Settlement periods from prehistoric times up to the present day. Beiträge zur Allgemeinen Vergleichenden Archäologie 18, (1998). 2747.Google Scholar
Simons, A., Schön, W., and Shrestha, S.S. Preliminary report on the 1992 campaign of the team of the Institute of Prehistory, University of Cologne. Ancient Nepal 136, (1994). 5175.Google Scholar
Thelaus, M., (1992). Some characteristics of the mire-developpement in Hongyuan County, eastern Tibet plateau. Proceed. 9th Intern. Peat Congress 1. Uppsala, pp. 334351.Google Scholar
Umer, M., Lamb, H.F., Bonnefille, R., Lézine, A.M., Tiercelin, J.-J., Gibert, E., Cazet, J.P., and Watrin, J. Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia. Quaternary Science Review 26, (2007). 22292246.Google Scholar
Weninger, B., Jöris, O., Danzeglocke, U., (2004). Cologne Radiocarbon Calibration & Paleoclimate Package CalPal. (www.calpal.de).Google Scholar
Yu, Ge, Tang, L.Y., Yang, X.D., Ke, X.K., and Harrison, S.P. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecology & Biogeography 10, (2001). 503519.CrossRefGoogle Scholar
Zhang, J.W. The vegetation of Xizang. (1988). Science Press, Beijing. (in Chinese) Google Scholar
Zhu, L.P., Wu, Y.H., Wang, J.B., Lin, X., Ju, J.T., Xie, M.P., Li, M.H., Mäusbacher, R., Schwalb, A., and Daut, G. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, (2008). 831839.Google Scholar
Zohary, M. Geobotanical Foundations of the Middle East. (1973). Fischer, Stuttgart.Google Scholar