Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T03:26:01.679Z Has data issue: false hasContentIssue false

Downward Migration of Coastal Conifers as a Response to Recent Land Emergence in Eastern Hudson Bay, Québec

Published online by Cambridge University Press:  20 January 2017

Yves Bégin
Affiliation:
Centre d'études nordiques and Département de Géographie, Université Laval, Québec, Canada G1K 7P4
Dominique Bérubé
Affiliation:
Centre d'études nordiques and Département de Géographie, Université Laval, Québec, Canada G1K 7P4
Martin Grégoire
Affiliation:
Centre d'études nordiques and Département de Géographie, Université Laval, Québec, Canada G1K 7P4

Abstract

Postglacial uplift in the eastern Hudson Bay area is among the most rapid in the world (300 m during the last 8000 yr). Although emergence curves based on 14 C-dated raised shorelines give a consistent basis for modeling relative sea-level changes, such a low-resolution dating method is inappropriate for estimating trends over recent decades. A major downward displacement of white spruce (Picea glauca (Moench) Voss) and tamarack (Larix laricina (DuRoi) K. Koch) occurred on protected shores as a response to shoreline retreat during this century. Analysis of the age distribution of trees indicates a progradation of white spruce and tamarack on gently sloping terrain ranging from 1.3 and 2.6 cm/yr, respectively, toward the sea. Improvement of climatic conditions during the 20th century favored such expansion which was probably faster than the real land emergence rates, but recent episodes of high water levels caused regression of forest margins over the highly exposed shores. Nevertheless, the downward trend of the treeline over this century substantiates the projections of 14C-dated coastal emergence curves during the modern period (1.0 to 1.3 cm/yr) by providing an estimate of the maximum rates of shoreline retreat.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, M., and Tremblay, G. (1983). La dynamique littorale des îles Manitounuk durant l’Holocène. Zeitschrift für Geomorphologie 47, 6195.Google Scholar
Andrews, J. T. (1968). The pattern and interpretation of restrained postglacial and residual rebound in the area of Hudson Bay. In “Earth Science Symposium on Hudson Bay” (Hood, P. 3., Ed.), Geological Survey of Canada Paper 68-53, pp. 4961.Google Scholar
Andrews, J. T. (1970). Present and postglacial rates of the uplift for glaciated northern and eastern North-America derived from post-glacial uplift curves. Canadian Journal of Earth Sciences 7, 703715.Google Scholar
Andrews, J. T., and Peltier, W. R. (1983). Glacial geology and glacial isostasy of the Hudson Bay region. In “Shorelines and Isostasy” (Smith, D. E. and Dawson, A. G., Eds.), pp. 286319. Academic Press, London.Google Scholar
Andrews, J. T., and Peltier, W. R. (1989). Quaternary geodynamics in Canada. In “Geology of Canada: Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), pp. 541572. Geological Survey of Canada, Ottawa.Google Scholar
Bégin, Y., and Allard, M. (1983). Le glaciel de Kuujjuarapik (Nouveau-Québec). Nordicana 46, 39100.Google Scholar
Cramer, W. (1985). The effect of sea shore displacement on population age structure of coastal Alnus glutinosa (L.) Gaertn. Holarctic Ecology 8, 265272.Google Scholar
Ericson, L. (1981). The downward migration of plants on a rising Both-nian seashore. Acta Phytogeographica Suecica 68, 6172.Google Scholar
Fairbridge, R. W., and Hillaire-Marcel, C. (1977). An 8000-yr palaeo-climatic record of the “Double-Hale” 45-yr solar cycle. Nature (London) 268, 413416.CrossRefGoogle Scholar
Filion, L. Payette, S. Gauthier, L., and Boutin, Y. (1986). Light rings in subarctic conifers as a dendrochronological tool. Quaternary Research 26, 272279.CrossRefGoogle Scholar
Harper, J. L. (1977). “Population Biology of Plants.” Academic Press, London.Google Scholar
Hillaire-Marcel, C. (1976). La déglaciation et le relèvement isostatique sur la côte est de la baie d’Hudson. Cahiers de géographie de Québec 50, 185220.Google Scholar
Hillaire-Marcel, C. (1980). Multiple component post-glacial emergence, Eastern Hudson Bay, Canada. In “Earth Rheology, Isostasy and Eustasy” (Morner, N. A., Ed.), pp. 215230. Wiley, Toronto.Google Scholar
Innes, M. J. S. Goodacre, A. K. Weston, A. A., and Weber, J. R. (1968). Gravity and isostasy. In “Science, History, and Hudson Bay” (Beals, C. B., Ed.), Vol 2, pp. 703728. Department of Energy, Mines and Resources, Ottawa.Google Scholar
Locke, W. W. Andrews, J. T., and Webber, P. G. (1979). “A Manual for Lichenometry.” British Geomorphological Group Technical Bulletin 26, University of East Anglia, Norwich.Google Scholar
Low, A. P. (1903). “On an Exploration of the East Coast of Hudson Bay from Cape Wolstenholme to the South end of James Bay.” Geological Survey of Canada, Annual Report D, 1900, pp. 5D85D.Google Scholar
Morin, A., and Payette, S. (1984). Expansion récente du mélèze à la limite des forêts, Québec nordique. Canadian Journal of Botany 62, 14041408.Google Scholar
Ouellet, Y. Llamas, J., and Rassam, J.-C. (1982). Analyse des fluctuations du niveau d’eau dans le détroit de Manitounuk, à l’est de la baie d’Hudson. Naturaliste Canadien 109, 719731.Google Scholar
Payette, S. (1974). Classification écologique des formes de croissance de Picea glauca (Moench) Voss) et de Picea mariana (Mill.) BSP. en milieux subarctiques et subalpins. Naturaliste Canadien 101, 893903.Google Scholar
Payette, S. (1975). La limite septentrionale des forêts sur la côte orien-tale de la baie d’Hudson, Nouveau-Québec. Naturaliste Canadien 100, 493508.Google Scholar
Payette, S. (1983). The forest tundra and present tree-lines of Northern Québec-Labrador Peninsula. Nordicana 47, 323.Google Scholar
Payette, S., and Filion, L. (1985). White spruce expansion at the tree line and recent climatic change. Canadian Journal of Forest Re-search 15, 241251.CrossRefGoogle Scholar
Payette, S. Filion, L. Gauthier, L. and Boutin, Y. (1985). Secular climate change in old-growth tree-line vegetation of northern Quebec. Nature (London) 315, 135138.Google Scholar
Scurfield, G. (1973). Reaction wood: Its structure and function. Science 179, 647655.CrossRefGoogle ScholarPubMed
Sokal, R. R. Rohlf, F. J. (1981). “Biometry,” 2nd ed. Freeman, New York.Google Scholar
Verwijst, T., and Cramer, W. (1986). Age structure of woody species in primary succession on rising Bothnian Sea shore. In “IVFRO Workshop 1986, Forst Dynamics Research in Western and Central Europe,” pp. 145163. Puboc. Wageningen, Netherlands.Google Scholar
Wilson, C. (1968). Notes on the climate of Poste-de-la-Baleine, Québec. Centre d’études nordiques, University Laval, Québec. Nordicana 24, 93.Google Scholar