Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:30:48.010Z Has data issue: false hasContentIssue false

Does the El Niño–Southern Oscillation control the interhemispheric radiocarbon offset?

Published online by Cambridge University Press:  20 January 2017

Chris S.M. Turney*
Affiliation:
GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Jonathan G. Palmer
Affiliation:
Gondwana Tree Ring Laboratory, P.O. Box 14, Little River, Banks Peninsula, Canterbury 8162, New Zealand
*
Corresponding author. Fax: +61 2 4221 4250. E-mail address:[email protected] (C.S.M. Turney).

Abstract

Since the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño–Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, T.P., Pierce, D.W., Latif, M., Dommenger, D., and Saravanan, R. Interdecadal interactions between tropics and midlatitudes in the Pacific basin. Geophysical Research Letters 26, (1999). 615618.CrossRefGoogle Scholar
Bhaskaran, B., and Mullan, A.B. El Niño-related variations in the southern Pacific atmospheric circulation: model versus observations. Climate Dynamics 20, (2003). 229239.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffman, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Braziunas, T.F., Fung, I.Y., and Stuiver, M. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic and terrestrial reservoirs. Global Biogeochemical Cycles 9, (1995). 565584.CrossRefGoogle Scholar
Broecker, W.S. Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanography 13, (1998). 119121.Google Scholar
Broecker, W.S. Was a change in thermohaline circulation responsible for the Little Ice Age?. Proceedings of the National Academy of Sciences 97, (2000). 13391342.Google Scholar
Broecker, W.S. Was the Medieval Warm Period global?. Science 291, (2001). 14971499.CrossRefGoogle ScholarPubMed
Broecker, W.S., Sutherland, S., and Peng, T.-H. A possible 20th-century slowdown of Southern Ocean Deep Water formation. Science 286, (1999). 11321135.Google Scholar
Cane, M.A. The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, (2005). 227240.CrossRefGoogle Scholar
Chavez, F.P., Strutton, P.G., Friederich, G.E., Feely, R.A., Feldman, G.C., Foley, D.G., and McPhaden, M.J. Biological and chemical responses of the equatorial Pacific Ocean to the 1997–98 El Niño. Science 286, (1999). 21262131.CrossRefGoogle Scholar
Cobb, K.M., Charles, C.D., Cheng, H., and Edwards, R.L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, (2003). 271276.Google Scholar
Cook, E.R., Palmer, J.G., and D'Arrigo, R.D. Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophysical Research 29, (2002). doi:10.1029/2001GL014580 Google Scholar
Cook, E.R., Woodhose, C.A., Eakin, C.M., Meko, D.M., and Stahle, D.W. Long-term aridity changes in the western United States. Science 306, (2004). 10151018.CrossRefGoogle ScholarPubMed
D'Arrigo, R., Cook, E.R., Wilson, R.J., Allan, R., and Mann, M.E. On the variability of ENSO over the past six centuries. Geophysical Research 32, (2005). doi:10.1029/2004GL022055 Google Scholar
Diaz, H.F., and Kiladis, G.N. Atmospheric teleconnections associated with the extreme phase of the Southern Oscillation. Diaz, H.F., and Markgraf, V. El Niño, Historical and Paleoclimatic Aspects of the Southern Oscillation. (1992). Cambridge Univ. Press, Cambridge. 728.Google Scholar
Druffel, E.R.M., and Griffin, S. Large variation of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific. Journal of Geophysical Research 98, (1993). 2024920259.Google Scholar
Feely, R.A., Wanninkhof, R., Takahashi, T., and Tans, P. Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398, (1999). 597601.Google Scholar
Feely, R.A., Boutin, J., Cosca, C.E., Dandonneau, Y., Etcheto, J., Inoue, H.Y., Ishii, M., Le Quere, C., Mackey, D.J., McPhaden, M., Metzl, N., Poisson, A., and Wanninkhof, R. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep Sea Research Part II 49, (2002). 24432469.CrossRefGoogle Scholar
Fitzharris, B. Climate. Draby, J., Fordyce, R.E., Mark, A., Probert, K., and Townsend, C. The Natural History of Southern New Zealand. (2003). University of Otago Press, Dunedin. 6586.Google Scholar
Fowler, A., Palmer, J., Salinger, J., and Ogden, J. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri): 2. Evidence of a significant relationship with ENSO. Journal of the Royal Society of New Zealand 30, (2000). 277292.Google Scholar
Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., and Schrag, D.P. New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, (2000). 4564.Google Scholar
Gagan, M.K., Hendy, E.J., Haberle, S.G., and Hantoro, W.S. Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern Oscillation. Quaternary International 118–119, (2004). 127143.CrossRefGoogle Scholar
Gershunov, A., and Barnett, T.P. Interdecadal modulation of ENSO teleconnections. Bulletin of the American Meteorological Society 79, (1998). 27152726.2.0.CO;2>CrossRefGoogle Scholar
Grove, J.M. The Little Ice Age. (1988). Methuen, New York.Google Scholar
Guilderson, T.P., and Schrag, D.P. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281, (1998). 240243.CrossRefGoogle ScholarPubMed
Hendy, E.J., Gagan, M.K., Alibert, C.A., McCulloch, M.T., Lough, J.M., and Isdale, P.J. Abrupt decrease in tropical Pacific sea surface salinity at the end of Little Ice Age. Science 295, (2002). 15111514.CrossRefGoogle ScholarPubMed
Hogg, A.G., McCormac, F.G., Higham, T.F.G., Reimer, P.J., Baillie, M.G.L., and Palmer, J.G. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44, (2002). 633640.CrossRefGoogle Scholar
Hogg, A.A., Higham, T.F.G., Lowe, D.J., Palmer, J.G., Reimer, P.J., and Newnham, R.M. A wiggle-matched date for Polynesian settlement of New Zealand. Antiquity 77, (2004). 116125.Google Scholar
Hooker, B.L., and Fitzharris, B.B. The correlation between climatic parameters and the retreat and advance of Franz Josef Glacier, New Zealand. Global and Planetary Change 22, (1999). 3948.CrossRefGoogle Scholar
Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., and Turnbull, J. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303, (2004). 202207.CrossRefGoogle ScholarPubMed
Hunt, T.L., and Lipo, C.P. Late colonization of Easter Island. Science 311, (2006). 16031606.Google Scholar
Irwin, G. The Prehistoric Exploration and Colonisation of the Pacific. (1992). Cambridge Univ. Press, Cambridge. 240 Google Scholar
Jones, P.D., Osborn, T.J., and Briffa, K.R. The evolution of climate over the last millennium. Science 292, (2001). 662667.Google Scholar
Kirch, P.V., and Sharp, W.D. Coral 230Th dating of the imposition of a ritual control hierarchy in precontact Hawaii. Science 307, (2005). 102104.CrossRefGoogle ScholarPubMed
Larkin, N.K., and Harris, D.E. ENSO warm (El Nino) and cold (La Nina) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries and implications. Journal of Climate 15, (2002). 11181141.Google Scholar
Lerman, J.C., Mook, W.G., and Vogel, J.C. 14C in tree-rings from different localities. Olsson, I.U. Radiocarbon Variations and Absolute Chronology: Proceedings of the Twelfth Nobel Symposium held at the Institute of Physics at Uppsala University. Almquist and Wiksell, Stockholm. (1970). 652 pp.Google Scholar
Mann, M.E., Bradley, R.S., and Hughes, M.K. Long-term variability in the El Nino Southern Oscillation and associated teleconnections. Diaz, H.F., and Markgraf, V. El Nino and the Southern Oscillation: Multiscale Variability and its Impacts on Natural Ecosystems and Society. (2000). Cambridge Univ. Press, Cambridge, UK. 357412.Google Scholar
Manning, A.C., Keeling, R.F., and Katz, L.E. Interpreting the seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory. Geophysical Research 30, (2003). doi:http://dx.doi.org/10.1029/2001GL014312Google Scholar
Matisoo-Smith, E., and Robins, J.H. Origins and dispersals of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. Proceedings of the National Academy of Sciences 101, (2004). 91679172.Google Scholar
McGlone, M.S., and Wilmshurst, J.M. Dating initial Maori environmental impact in New Zealand. Quaternary International 59, (1999). 516.CrossRefGoogle Scholar
McKinley, G.A., Follows, M.J., and Marshall, J. Mechanisms of air–sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Global Biogeochemical 18, (2004). doi:10.1029/2003GB002179 Google Scholar
McPhaden, M.J., Busalacchi, A.J., Cheney, R., Donguy, J.R., Gage, K.S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G.T., Niiler, P.P., Picaut, J., Reynolds, R.W., Smith, N., and Takeuchi, K. The Tropical Ocean-Global Atmosphere observing system: a decade of progress. Journal of Geophysical Research 103, (1998). 1416914240.Google Scholar
Minobe, S. A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters 24, (1997). 683686.Google Scholar
Minobe, S. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climate regime shifts. Geophysical Research Letters 26, (1999). 855858.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, (2005). 613617.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millenial timescales during the Holocene epoch. Nature 420, (2002). 162165.Google Scholar
Paillard, D., Labeyrie, L., and Yiou, P. Macintosh program performs time-series analysis. Eos 77, (1996). 379 Google Scholar
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics 15, (1999). 319324.Google Scholar
Quinn, W.H., Neal, V.T., and de Mayolo, S.E.A. El Niño occurrences over the past four and a half centuries. Journal of Geophysical Research 92, (1987). 1444914461.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., and Kromer, B. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo, W.C. El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, (2005). doi:10.1029/2004PA001099 Google Scholar
Rind, D. Relating paleoclimate data and past temperatures gradients: some suggestive rules. Quaternary Science Reviews 19, (2000). 381390.Google Scholar
Rolett, B., and Diamond, J. Environmental predictors of pre-European deforestation on Pacific islands. Nature 431, (2004). 443446.CrossRefGoogle ScholarPubMed
Russell, J.M., Johnson, T.C., and Talbot, M.R. A 725 yr cycle in the climate of central Africa during the late Holocene. Geology 31, (2003). 677680.Google Scholar
Sandweiss, D.H., Maasch, K.A., and Anderson, D.G. Transitions in the mid-Holocene. Science 283, (1999). 499500.Google Scholar
Salinger, M.J., Renwick, J.A., and Mullan, A.B. Interdecadal Pacific oscillation and south Pacific climate. International Journal of Climatology 21, (2001). 17051721.Google Scholar
Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B.H., Apps, M.J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A.S., Field, C.B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R.A., Melillo, J.M., Moore III, B., Murdiyarso, D., Noble, I., Pacala, S.W., Prentice, I.C., Raupach, M.R., Rayner, P.J., Scholes, R.J., Steffen, W.L., and Wirth, C. Recent changes and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, (2001). 169172.Google Scholar
Stuiver, M., Braziunas, T.F., Becker, B., and Kromer, B. Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35, (1991). 124.Google Scholar
Sutton, D.G. Origins. Sutton, D.G. The Origins of the First New Zealanders. (1994). Auckland Univ. Press, Auckland. 243258.Google Scholar
Thomson, D.J. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70, (1982). 10551096.Google Scholar
Toggweiler, J.R., Dixon, K., and Broecker, W.S. The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research 96, (1991). 2046720497.Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B. Variability in the El Niño-Southern Oscillation through a glacial–interglacial cycle. Science 291, (2001). 15111517.Google Scholar
Turney, C.S.M., Kershaw, P., Clemens, S., Branch, N., Moss, P., and Fifield, L.K. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428, (2004). 306310.Google Scholar
Turney, C., Baillie, M., Clemens, S., Brown, D., Palmer, J., Pilcher, J., Reimer, P., and Leuschner, H.H. Testing solar forcing of pervasive Holocene climate cycles. Journal of Quaternary Science 20, (2005). 511518.Google Scholar
Tziperman, E., Cane, M.A., Zebiak, E., Xue, Y., and Blumenthal, B. Locking of El Niño's peak time to the end of the calendar year in the delayed oscillator picture of ENSO. Journal of Climate 11, (1998). 21912199.Google Scholar
Verdon, D.C., and Franks, S.W. Long-term behaviour of ENSO: interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophysical Research 33, (2006). doi:10.1029/2005GL025052 Google Scholar
Vogel, J.C., Fuls, A., and Visser, E. Pretoria calibration for short-lived samples, 1930–3350 BC. Radiocarbon 35, (1993). 7385.Google Scholar
Whetton, P., and Rutherford, I. Historical ENSO teleconnections in the Eastern Hemisphere. Climatic Change 28, (1994). 221253.CrossRefGoogle Scholar
Zhang, Y., Wallace, J.M., and Battisti, D.S. ENSO-like interdecadal variability: 1900–93. Journal of Climate 10, (1997). 10041020.Google Scholar