Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T15:29:51.492Z Has data issue: false hasContentIssue false

Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change

Published online by Cambridge University Press:  20 January 2017

R. Scott Anderson*
Affiliation:
Center for Environmental Sciences & Education, Box 5694, Northern Arizona University, Flagstaff, AZ 86011, USA Quaternary Sciences Program & Bilby Research Center, Box 6013, Northern Arizona University, Flagstaff, AZ 86011, USA
Renata B. Jass
Affiliation:
Quaternary Sciences Program & Bilby Research Center, Box 6013, Northern Arizona University, Flagstaff, AZ 86011, USA
Jaime L. Toney
Affiliation:
Quaternary Sciences Program & Bilby Research Center, Box 6013, Northern Arizona University, Flagstaff, AZ 86011, USA
Craig D. Allen
Affiliation:
U.S. Geological Survey, Jemez Mountains Field Station, Bandelier National Monument, HCR-1, Box 1, #15, Los Alamos, NM 87544, USA
Luz M. Cisneros-Dozal
Affiliation:
Earth & Environmental Sciences Division, Hydrology, Geochemistry & Geology Group, EES-6, MS-D462, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Marcey Hess
Affiliation:
Earth & Environmental Sciences Division, Hydrology, Geochemistry & Geology Group, EES-6, MS-D462, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Jeff Heikoop
Affiliation:
Earth & Environmental Sciences Division, Hydrology, Geochemistry & Geology Group, EES-6, MS-D462, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Julianna Fessenden
Affiliation:
Earth & Environmental Sciences Division, Hydrology, Geochemistry & Geology Group, EES-6, MS-D462, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
*Corresponding author. Center for Environmental Sciences & Education, Box 5694, Northern Arizona University, Flagstaff, AZ 86011, USA. Fax: +1 928 523 7423.E-mail address:[email protected] (R.S. Anderson).

Abstract

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: 4014 Lewis Lane, Austin, TX 78756, USA.
Present address: Geological Sciences, Brown University, 324 Brook St, Box 1846, Providence, RI 02912, USA.

References

Allen, C.D., (2004). Ecological patterns and environmental change in the Bandelier landscape. Kohler, T.A., Village formation on the Pajarito Plateau, New Mexico. University of New Mexico Press, Albuquerque., 1968.Google Scholar
Allen, C.D., Anderson, R.S., Jass, R.B., Toney, J.L., Baisan, C.H., in press. Paired charcoal and tree-ring records of high-frequency fire from two New Mexico bog sites. International Journal of Wildland Fire.CrossRefGoogle Scholar
Anderson, R.S., (1989). Development of the southwestern ponderosa pine forests — what do we really know?. USDA Forest Service, Rocky Mountain Forest Range Experimental Station, General Technical Report RM-185 1522.Google Scholar
Anderson, R.S., (1993). A 35,000 yr vegetation and climate history from Potato Lake, Mogollon Rim, Arizona. Quaternary Research 40, 351359.CrossRefGoogle Scholar
Anderson, R.S., Hasbargen, J., Koehler, P.A., Feiler, E.J., (1999). Late Wisconsin and Holocene subalpine forests of the Markagunt Plateau of Utah, southwestern Colorado Plateau, U.S.A. Arctic. Arctic, Antarctic, and Alpine Research 31, 366378.CrossRefGoogle Scholar
Anderson, R.S., Betancourt, J.L., Mead, J.I., Hevly, R.H., Adam, D.P., (2000). Middle- and Late-Wisconsin paleobotanic and paleoclimatic records from the southern Colorado Plateau, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 3157.CrossRefGoogle Scholar
Anderson, R.S., Allen, C.D., Toney, J.L., Jass, R.B., Bair, A.N., (2004). Holocene vegetation and forest fire regimes in subalpine and mixed conifer forests, southern Colorado & northern New Mexico, USA. Polin 14, 220.Google Scholar
Anderson, R.S., Allen, C.D., Toney, J.L., Jass, R.B., Bair, A.N., in press. Holocene vegetation and forest fire regimes in subalpine and mixed conifer forests. southern Rocky Mountains, USA. International Journal of Wildland Fire.Google Scholar
Andrews, J.T., Carrara, P.E., King, F.B., Stuckenrath, R., (1975). Holocene environmental changes in the alpine zone, northern San Juan Mountains, Colorado: evidence from bog stratigraphy and palynology. Quaternary Research 5, 173197.CrossRefGoogle Scholar
Appleby, P.G., (2001). Chronostratigraphic techniques in recent sediments. Last, W.M., Smol, J.P., Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht., 171203.Google Scholar
Armour, J., Fawcett, P.J., Geissman, J.W., (2002). 15 k.y. paleoclimatic and glacial record from northern New Mexico. Geology 30, 723726.2.0.CO;2>CrossRefGoogle Scholar
Bair, A.N., (2004). A 15,000 year vegetation and fire history record from the southern Sangre de Cristo Mountains of northern New Mexico. MS Thesis, Northern Arizona University.Google Scholar
Banerjee, A., Sharma, R., Chisti, Y., Banerjee, U.C., (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology 22, 245279.CrossRefGoogle ScholarPubMed
Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb, R.S., Webb, T. III, Whitlock, C., (1998). Paleoclimate simulations for North America over the past 21,000 yr: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585.CrossRefGoogle Scholar
Betancourt, J.L., (1990). Late Quaternary biogeography of the Colorado Plateau. Betancourt, J.L., Van Devender, T.R., Martin, P.S., Packrat middens: The last 40,000 yr of biotic change. University of Arizona Press, Tucson., 259292.Google Scholar
Betancourt, J.L., Van Devender, T.R., (1981). Holocene vegetation in Chaco Canyon, New Mexico. Science 214, 658660.CrossRefGoogle ScholarPubMed
Betancourt, J.L., Rylander, K.A., Peñalba, C., McVickar, J.L., (2001). Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 7195.CrossRefGoogle Scholar
Blinn, D.W., Hevly, R.H., Davis, O.K., (1994). Continuous Holocene record of diatom stratigraphy, paleohydrology and anthropogenic activity in a spring-mound in southwestern United States. Quaternary Research 42, 197205.CrossRefGoogle Scholar
Boon, P.I., Bunn, S.E., (1994). Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquatic Botany 48, 99108.CrossRefGoogle Scholar
Boyle, E., (1993). Paleoceanography — measures of productivity. Nature 362, 2122.CrossRefGoogle Scholar
Brenner, M., Whitmore, T.J., Curtis, J.H., Hodell, D.A., Schelske, C.L., (1999). Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology 22, 205221.CrossRefGoogle Scholar
Brunner Jass, R.M., (1999). Fire occurrence and paleoecology at Alamo Bog and Chihuahueños Bog. Jemez Mountains, New Mexico, USA. MS Thesis, Northern Arizona University, .Google Scholar
Chen, X., Cabrera, M.L., Zhang, L., Shi, Y., Shen, S.M., (2003). Long-term decomposition of organic materials with different carbon/nitrogen ratios. Communications in Soil Science and Plant Analysis 34, 4154.CrossRefGoogle Scholar
Christensen, N.L., (1973). Fire and the nitrogen cycle in california chaparral. Science 181, 6668.CrossRefGoogle ScholarPubMed
COHMAP Members, , (1998). The development of late-glacial and Holocene climates: interpretation of paleoclimate observations and model simulations. Science 241, 10431052.CrossRefGoogle Scholar
Davis, O.K., Shafer, D.S., (1992). A Holocene climatic record for the Sonoran Desert from pollen analysis of Montezuma Well, Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 92, 107119.CrossRefGoogle Scholar
Dick-Peddie, W.A., (1993). New Mexico Vegetation. University of New Mexico Press, Albuquerque., .Google Scholar
Elias, S.A., (1992). Late Quaternary zoogeography of the Chihuahuan Desert insect fauna, based on fossil records from packrat middens. Journal of Biogeography 19, 285297.CrossRefGoogle Scholar
Elias, S.A., Van Devender, T.R., (1992). Insect fossil evidence of late Quaternary environments in the northern Chihuahuan Desert of Texas and New Mexico: comparisons with the paleobotanical record. Southwestern Naturalist 37, 101116.CrossRefGoogle Scholar
Elias, S., Carrara, P., Toolin, L., Jull, A., (1991). Revised age of deglaciation of Lake Emma based on new radiocarbon and macrofossil analyses. Quaternary Research 36, 307321.CrossRefGoogle Scholar
Ensey, M., (1997). The late Holocene environment of the Jemez Mountains. New Mexico. MS Thesis, Washington State University, .Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th ed. John Wiley, Chichester., .Google Scholar
Fall, P.L., (1997). Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Geological Society of America Bulletin 109, 13061320.2.3.CO;2>CrossRefGoogle Scholar
Farquhar, G.D., Richards, R.A., (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat triticum-aestivum genotypes. Australian Journal of Plant Physiology 11, 539552.Google Scholar
Farquhar, G.D., O'leary, M.H., Berry, J.A., (1982). Relationship between carbon isotope discrimination and the inter cellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121138.Google Scholar
Fawcett, P.J., Heikoop, J., Goff, F., Anderson, R.S., Donohoo-Hurley, L., Geissman, J.W., WoldeGabriel, G., Allen, C.D., Johnson, C., Smith, S.J., Fessenden-Rahn, J., (2007). Two Middle Pleistocene glacial–interglacial cycles from the Valle Grande, Jemez Mountains, northern New Mexico. New Mexico Geological Society Guidebook, 58th Field Conference, Geology of the Jemez Mountains Region II 121129.Google Scholar
Feiler, E.J., Anderson, R.S., Koehler, P.A., (1997). Late Quaternary paleoenvironments of the White River Plateau, Colorado, U.S.A.. Arctic and Alpine Research 29, 5362.CrossRefGoogle Scholar
Fogel, M.L., Tuross, N., (1999). Transformation of plant biochemicals to geological macromolecules during early diagenesis. Oecologia 120, 336346.CrossRefGoogle ScholarPubMed
Foxx, T.S., Tierney, G.D., (1985). Status of the flora of the Los Alamos National Environmental Research Park. Checklist of vascular plants of the Pajarito Plateau and Jemez Mountains. LA-8050-NERP. vol. 3, Los Alamos National Laboratory, Los Alamos, New Mexico., .Google Scholar
Friddell, J.E., Thunell, R.C., Guilderson, T.P., Kashgarian, M., (2003). Increased northeast Pacific climatic variability during the warm middle Holocene. Geophysical Research Letters 30, 11, 1560 .CrossRefGoogle Scholar
Friedman, I., Carrara, P., Gleason, J., (1988). Isotopic evidence of Holocene climate change in the San Juan Mountains, Colorado. Quaternary Research 30, 350353.CrossRefGoogle Scholar
Grogan, P., Bruns, T.D., Chapin, F.S., (2000). Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122, 537544.CrossRefGoogle Scholar
Harlow, W.M., (1947). The identification of the pines of the United States, native and introduced, by needle structure. Technical Publication vol. 32, New York State College of Forestry, 57 pp.Google Scholar
Hasbargen, J., (1994). A Holocene paleoclimatic and environmental record from Stoneman Lake, Arizona. Quaternary Research 42, 188196.CrossRefGoogle Scholar
Hodell, D.A., Schelske, C.L., (1998). Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43, 200214.CrossRefGoogle Scholar
Holmgren, C., Peñalba, M.C., Rylander, K.A., Betancourt, J.L., (2003). A 16,000 14C yr BP packrat midden series from the U.S.A.–Mexico Borderlands. Quaternary Research 60, 319329.CrossRefGoogle Scholar
Holmgren, C.A., Betancourt, J.L., Rylander, K.A., (2006). A 36,000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 405422.CrossRefGoogle Scholar
Holmgren, C.A., Norris, J., Betancourt, J.L., (2007). Inferences about winter temperatures and summer rains from the late Quaternary record of C4 perennial grasses and C3 desert shrubs in the northern Chihuahuan Desert. Journal of Quaternary Science 22, 141161.CrossRefGoogle Scholar
Jacobs, B.F., (1985). Identification of pine pollen from the southwestern United States. Contributions Series - American Association of Stratigraphic Palynologists 16, 155168.Google Scholar
Kapp, R.O., Davis, O.K., King, J.E., (2000). How to Know Pollen and Spores. 2nd ed. American Association of Stratigraphic Palynologists Foundation, Houston., .Google Scholar
Kramer, M.G., Sollins, P., Sletten, R.S., Swart, P.K., (2003). N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84, 20212025.CrossRefGoogle Scholar
Kutzbach, J.E., Guetter, P.J., (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 yr. Journal of the Atmospheric Sciences 43, 17261759.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J.E., Guetter, P.J., Behling, P.J., Selin, R., (1993). Simulated climatic changes: results of the COHMAP climate-model experiments. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J., Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis., 2493.Google Scholar
Kutzbach, J., Behling, P., Selin, R., Laarif, F., Gallimore, R., Harrison, S., (1998). Climate and biome simulations for the past 21,000 yr. Quaternary Science Reviews 17, 473506.CrossRefGoogle Scholar
Legg, T.E., Baker, R.G., (1980). Palynology of Pinedale sediments, Devlins Park, Boulder County, Colorado. Arctic and Alpine Research 12, 319333.CrossRefGoogle Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., Millspaugh, S.H., (1998). A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest History 28, 774787.CrossRefGoogle Scholar
Maher, L., (1961). Pollen analysis and postglacial vegetation history in the Animas Valley region. southern San Juan Mountains, Colorado. PhD Dissertation, University of Minnesota, , Minneapolis., .Google Scholar
Markgraf, V., Scott, L., (1981). Lower timberline in central Colorado during the past 15,000 yr. Geology 9, 231234.2.0.CO;2>CrossRefGoogle Scholar
Menounos, B., Reasoner, M.A., (1997). Evidence for cirque glaciation in the Colorado Front Range during the Younger Dryas Chronozone. Quaternary Research 48, 3847.CrossRefGoogle Scholar
Metzger, P., Largeau, C., (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66, 486496.CrossRefGoogle ScholarPubMed
Meyers, P.A., (2003). Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261289.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis. 2nd ed. Blackwell Scientific Publications, Oxford., .Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 6912, 162165.CrossRefGoogle ScholarPubMed
Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., (1999). Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management 122, 5171.CrossRefGoogle Scholar
Osmond, C.B., Valaane, N., Haslam, S.M., Uotila, P., Roksandic, Z., (1981). Comparisons of δ 13C values in leaves of aquatic macrophytes from different habitats in Britain UK and Finland some implications for photosynthetic processes in aquatic plants. Oecologia 50, 117124.CrossRefGoogle Scholar
Pase, C.P., Brown, D.E., (1982). Rocky Mountain (petran) and Madrean montane conifer forests. Brown, D.E., Biotic communities of the American Southwest — United States and Mexico. Desert Plants vol. 4, 4348.Google Scholar
Petersen, K.L., (1981). 10,000 years of climate change reconstructed from fossil pollen. La Plata Mountains, southwestern Colorado. PhD Dissertation, Washington State University, , Pullman., .Google Scholar
Petersen, K.L., Mehringer, P.J. Jr., (1976). Postglacial timberline fluctuations, La Plata Mountains, southwestern Colorado. Arctic and Alpine Research 8, 275288.CrossRefGoogle Scholar
Porter, S.C., Pierce, K.L., Hamilton, T.D., (1983). Late Wisconsin mountain glaciation in the western United States. Porter, S.C., Late-Quaternary environments of the United States, The Late Pleistocene vol. I, University of Minnesota Press, Minneapolis., 71111.Google Scholar
Reasoner, M.A., Jodry, M.A., (2000). Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA. Geology 28, 5154.2.0.CO;2>CrossRefGoogle Scholar
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W.-C., (2005). El Niño variability off Peru during the last 22,000 yr. Paleoceanography 20, A4003 .CrossRefGoogle Scholar
Reneau, S.L., McDonald, R.V., (1996). Landscape history and processes on the Pajarito Plateau, northern New Mexico. Rocky Mountain Cell, Friends of the Pleistocene Field Trip Guidebook Los Alamos National Laboratory, NM., .Google Scholar
Rodbell, D.T., Selzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An ∼ 15,000-year record of El Niño-driven alleviation in southwestern Ecuador. Science 283, 516520.CrossRefGoogle Scholar
Sandgren, P., Snowball, I., (2001). Application of mineral magnetic techniques to paleolimnology. Last, W.M., Smol, J.P., Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods vol. 2, Kluwer, Dordrecht., 217237.Google Scholar
Sears, P.B., Clisby, K.H., (1952). Two long climatic records. Science 116, 176178.CrossRefGoogle ScholarPubMed
Spaulding, W.G., (1991). A middle Holocene vegetation record from the Mojave Desert of North America and its paleoclimatic significance. Quaternary Research 35, 427437.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plickt, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Thompson, R.S., Whitlock, C., Bartlein, P.J., Harrison, S.P., Spaulding, W.G., (1993). Climatic changes in the western United States since 18,000 yr B.P.. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J., Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis., 468513.Google Scholar
Toney, J.L., Anderson, R.S., (2006). A postglacial palaeoecological record from the San Juan Mountains of Colorado USA: fire, climate and vegetation history. The Holocene 16, 115.CrossRefGoogle Scholar
Van Devender, T.R., (1990). Late Quaternary vegetation and climate of the Chihuahuan Desert, United States and Mexico. Betancourt, J.L., Van Devender, T.R., Martin, P.S., Packrat Middens — the Last 40,000 yr of Biotic Change. University of Arizona Press, Tucson., 105133.Google Scholar
Vierling, L.A., (1998). Palynological evidence for late- and postglacial environmental change in central Colorado. Quaternary Research 49, 222232.CrossRefGoogle Scholar
Wada, E., Hattori, A., (1976). Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochimica et Cosmochimica Acta 40, 249251.CrossRefGoogle Scholar
Weng, C., Jackson, S.T., (1999). Late-glacial and Holocene vegetation history and paleoclimate of the Kaibab Plateau, Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology 153, 179201.CrossRefGoogle Scholar
Whitlock, C., Anderson, R.S., (2003). Fire history reconstructions based on sediment records from lakes and wetlands. Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Fire and Climatic Change in Temperate Forests of the Americas. Ecological Studies vol. 160, Springer-Verlag, New York., 331.CrossRefGoogle Scholar
Wolff, J.A., Gardner, J.N., (1995). Is the Valles caldera entering a new cycle of activity?. Geology 23, 411414.2.3.CO;2>CrossRefGoogle Scholar
Wright, H.E. Jr., Bent, A.M., Hansen, B.S., Maher, L.J. Jr., (1973). Present and past vegetation of the Chuska Mountains, northwestern New Mexico. Geological Society of America Bulletin 84, 11551180.2.0.CO;2>CrossRefGoogle Scholar