Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T04:03:25.145Z Has data issue: false hasContentIssue false

A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records

Published online by Cambridge University Press:  20 January 2017

Weihong Zhang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Jiangying Wu*
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Yi Wang
Affiliation:
Department of Geography, School of Global Studies, University of Sussex, Brighton BN1 9QJ, UK
Yongjin Wang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Xinggong Kong
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Fucai Duan
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
*
*Corresponding author at: College of Geography Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China.Fax: + 86 25 83598125.E-mail addresses:[email protected] (W. Zhang), [email protected] (J.Wu), [email protected] (Y.Wang), [email protected] (Y.Wang), [email protected] (H. Cheng), [email protected] (X. Kong), [email protected] (F. Duan).

Abstract

The ‘Mystery Interval’ (MI, 17.5−14.5 ka) was the first stage of the last deglaciation, a key interval for understanding mechanisms of glacial–interglacial cycles. To elucidate possible causes of the MI, here we present three high-resolution, precisely dated oxygen-isotope records of stalagmites from Qingtian and Hulu Caves in China, reflecting changes in the East Asian summer monsoon (EASM) then. Based on well-established chronologies using precise 230Th dates and annual-band counting results, the two-cave δ18O profiles of ~7-yr resolution match well at decadal timescales. Both of the two-cave records document an abrupt weakening (2‰ of δ18O rise within 20 yr) in the EASM at ~16.1 ka, coinciding with the transition of the two-phased MI reconstructed from New Mexico's Lake Estancia. Our results indicate that the maximum southward displacement of the Intertropical Convergence Zone and associated southward shift of polar jet stream may generate this two-phase feature of the MI during that time. We also discover a linear relationship among decreasing EASM intensity, rising atmospheric CO2 and weakening Atlantic Meridional Overturning Circulation between the MI and Younger Dryas episodes, suggesting a strong coupling of atmospheric/oceanic circulations in response to the millennial-scale forcing, which in turn regulates global climate changes and carbon cycles.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, B.D., and Anderson, R.Y. A continuous high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico. Geological Society of America Bulletin 112, (2000). 14441458.Google Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Rothlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., Vinther, B.M., and Clausen, H.B. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, (2006). 32463257.CrossRefGoogle Scholar
Anderson, R.F., Ali, S., Bradtmiller, L.I., Nielsen, S.H.H., Fleisher, M.Q., Anderson, B.E., and Burckle, L.H. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, (2009). 14431448.CrossRefGoogle ScholarPubMed
Asmerom, Y., Polyak, V.J., and Burns, S.J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, (2010). 114117.CrossRefGoogle Scholar
Baker, A., Ito, E., Smart, P., and McEwan, R. Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology 136, (1997). 263270.Google Scholar
Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R., and Broecker, W.S. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, (2009). 10971102.CrossRefGoogle ScholarPubMed
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.Google Scholar
Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T.F. High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences 9, (2012). 39663971.CrossRefGoogle Scholar
Blunier, T., and Brook, E.J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, (2001). 109112.Google Scholar
Broecker, W.S. Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanographic 13, (1998). 119121.Google Scholar
Broecker, W.S., and Barker, S. A 190‰ drop in atmosphere's Δ14C during the “Mystery Interval” (17.5 to 14.5 kyrs). Earth and Planetary Science Letters 256, (2007). 9099.Google Scholar
Broecker, W.S., and Putnam, A.E. How did the hydrologic cycle respond to the two-phase mystery interval?. Quaternary Science Reviews 57, (2012). 1725.CrossRefGoogle Scholar
Broecker, W.S., McGee, D., Adams, K., Cheng, H., Edwards, R.L., Oviatt, C.G., and Quade, J. A Great Basin-wide dry episode during the first half of the mystery interval?. Quaternary Science Reviews 28, (2009). 25572563.CrossRefGoogle Scholar
Bryan, S.P., Marchitto, T.M., and Lehman, S.J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea. Earth and Planetary Science Letters 298, (2010). 244254.CrossRefGoogle Scholar
Burke, A., and Robinson, L.F. The southern ocean's role in carbon exchange during the last deglaciation. Science 335, (2012). 557561.Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, (2000). 1733.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X.G., Wang, Y.J., Zhang, R., and Wang, X.F. Ice age terminations. Science 326, (2009). 248252.Google Scholar
Cheng, H., Sinha, A., Wang, X.F., Cruz, F.W., and Edwards, R.L. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39, (2012). 10451062.Google Scholar
Chiang, J.C.H., and Bitz, C.M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, (2005). 477496.CrossRefGoogle Scholar
Chiang, J.C.H., Biasutti, M., and Battisti, D.S. Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography 18, (2003). 1094 http://dx.doi.org/10.1029/2003PA000916 Google Scholar
Cruz, F.W. Jr., Burns, S.J., Karmannb, I., Sharp, W.D., Vuille, M., and Ferrari, J.A. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25, (2005). 27492761.Google Scholar
Denton, G.H., Broecker, W.S., and Alley, R.B. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, (2006). 1416.CrossRefGoogle Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefe, J.M., and Putnam, A.E. The last glacial termination. Science 328, (2010). 16521656.CrossRefGoogle ScholarPubMed
Deplazes, G., Lückge, A., Peterson, L.C., Timmermann, A., Hamann, Y., Hughen, K.A., Röhl, U., Laj, C., Cane, M.A., Sigman, D.M., and Haug, G.H. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 6, (2013). 213217.Google Scholar
Dorale, J.A., and Liu, A.H. Limitations of Hendy test criteria in judging the paleoclimate suitability of speleothems and the need for replication. The Journal of Cave and Karst Studies 71, (2009). 7380.Google Scholar
Edwards, R.L., Chen, J.H., and Wasserburg, G.J. 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, (1987). 175192.Google Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R.L., Mudelsee, M., Gokturk, O.M., Fankhauser, A., Pickering, R., Raible, C.C., Matter, A., Kramers, J., and Tuysuz, O. Timing and climatic imprint of Greenland interstadials recorded in stalagmites from Northern Turkey. Geophysical Research Letters 36, (2009). L19707 http://dx.doi.org/10.1029/2009GL040050 Google Scholar
Ganopolski, A., and Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, (2001). 153158.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exer, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2003). 833838.CrossRefGoogle ScholarPubMed
Hendy, C.H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimca et Cosmochimica Acta 35, (1971). 801824.Google Scholar
Kirby, M.E., Feakins, S.J., Bonuso, N., Fantozzi, J.M., and Hine, C.A. Latest Pleistocene to Holocene hydroclimates from Lake Elsinore, California. Quaternary Science Reviews 76, (2013). 115.Google Scholar
Kong, X.G., Wang, Y.J., Wu, J.Y., and Cheng, H. A continuous 3000-year precipitation record of ENSO variability during LGM from a stalagmite in Nanjing. Chinese Science Bulletin 48, (2003). 480484.Google Scholar
Kong, X.G., Wang, Y.J., Wu, J.Y., Cheng, H., Edwards, R.L., and Wang, X.F. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China. Science in China Series D: Earth Sciences 48, (2005). 21742181.Google Scholar
Liu, D.B., Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Wang, X.F., Wu, J.Y., and Chen, S.T. A detailed comparison of Asian monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events. Earth and Planetary Science Letters 272, (2008). 691697.Google Scholar
Liu, D.B., Wang, Y.J., Cheng, H., Kong, X.G., and Chen, S.T. Centennial-scale Asian monsoon variability during the mid-Younger Dryas from Qingtian Cave, central China. Quaternary Research 80, (2013). 199206.Google Scholar
Liu, Z.Y., Wen, X.Y., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H.Y., Cheng, H., Wang, Y.J., Zheng, W.P., Ding, Y.H., Edwards, R.L., Cheng, J., Liu, W., and Yang, H. Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, (2014). 115128.Google Scholar
Ma, Z.B., Cheng, H., Tan, M., Edwards, R.L., Li, H.-C., You, C.-F., Duan, W.-H., Wang, X., and Kelly, M.J. Timing and structure of the Younger Dryas event in northern China. Quaternary Science Reviews 41, (2012). 8393.Google Scholar
Maher, B.A., and Thompson, R. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime. Journal of Quaternary Science 27, (2012). 615624.CrossRefGoogle Scholar
Marchitto, T.M., Lehman, S.J., Ortiz, J.D., Fluckiger, J., and Geen, A.V. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, (2007). 14561459.Google Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., and Brown-Ledger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, (2004). 834837.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., and Barnola, J.-M. Atmospheric CO2 concentrations over the last glacial termination. Science 297, (2001). 112114.CrossRefGoogle Scholar
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, (2013). 10601063.Google Scholar
Pausata, F.S.R., Battisti, D.S., Nisancioglu, K.H., and Bitz, C.M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, (2011). 474480.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E. et al. Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rohling, E.J., Grant, K., Hemleben, C., Kucera, M., Roberts, A.P., Schmeltzer, I., Schulz, H., Siccha, M., Siddall, M., and Trommer, G. New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3. Paleoceanography 23, (2008). PA3219 http://dx.doi.org/10.1029/2008PA001617 Google Scholar
Rohling, E.J., Liu, Q.S., Roberts, A.P., Stanford, J.D., Rasmussen, S.O., Langen, P.L., and Siddall, M. Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records. Quaternary Science Reviews 28, (2009). 32913302.Google Scholar
Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Ivy-Ochs, S., Kubik, P.W., Andersen, B.G., Phillips, F.M., Lowell, T.V., and Schlüchter, C. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312, (2006). 15101513.Google Scholar
Shen, C.-C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., and Edmonds, H.N. Uranium and thorium isotopic concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, (2002). 165178.Google Scholar
Shen, C.-C., Kano, A., Hori, M., Lin, K., Chiu, T.-C., and Burr, G.C. East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation. Quaternary Science Reviews 29, (2010). 33273335.Google Scholar
Siddall, M., Rohling, E., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., and Smeed, D.A. Sea-level fluctuations during the last glacial cycle. Nature 423, (2003). 853858.Google Scholar
Skinner, L.C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, (2010). 11471151.CrossRefGoogle ScholarPubMed
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.Google Scholar
Tan, M., Liu, D.S., Hou, J., Qin, X.G., Zhang, H., and Li, T.Y. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters 30, (2003). 16171621.CrossRefGoogle Scholar
Thornalley, D.J.R., Barker, S., Broecker, W.S., Elderfield, H., and McCave, I.N. The deglacial evolution of North Atlantic deep convection. Science 331, (2011). 202205.Google Scholar
Treble, P.C., Schmitt, A.K., Edwards, R.L., McKeegan, K.D., Harrison, T.M., Grove, M., Cheng, H., and Wang, Y.J. High resolution Secondary Ionisation Mass Spectrometry (SIMS) δ18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1. Chemical Geology 238, (2007). 197212.Google Scholar
Vellinga, M., and Wood, R.A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54, (2002). 251267.Google Scholar
Wang, B., and Lin, H. Rainy season of the Asian-Pacific summer monsoon. Journal of Climate 15, (2002). 363398.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.Google Scholar
Wang, X.F., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., and Solheid, M. Interhemispheric anti-phasing of rainfall during the last glacial period. Quaternary Science Reviews 25, (2006). 33913403.Google Scholar
Wentz, F.J., Ricciardulli, L., Hilburn, K., and Mears, C. How much more rain will global warming bring?. Science 317, (2007). 233235.Google Scholar
Wu, J.Y., Wang, Y.J., Cheng, H., and Edwards, R.L. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite. Science in China Series D: Earth Sciences 52, (2009). 360368.Google Scholar
Wu, J.Y., Wang, Y.J., Cheng, H., Kong, X.G., and Liu, D.B. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”. Climate of the Past 8, (2012). 14971507.Google Scholar
Yancheva, G., Nowacyzk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., and Haug, G.H. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, (2007). 7477.Google Scholar
Yuan, D.X., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M.L., Qing, J.M., Lin, Y.S., Wang, Y.J., Wu, J.Y., Dorale, J.A., An, Z.S., and Cai, Y.J. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, (2004). 575578.Google Scholar
Zhao, K., Wang, Y.J., Edwards, R.L., Cheng, H., and Liu, D.B. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth and Planetary Science Letters 298, (2010). 191198.CrossRefGoogle Scholar
Zhou, W.J., Priller, A., Beck, J.W., Wu, Z.K., Chen, M.B., An, Z.S., Walter, K., Xian, F., Yu, H.G., and Liu, L. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of 10Be. Radiocarbon 49, (2007). 139160.Google Scholar
Zhou, H.Y., Zhao, J.X., Zhang, P.Z., Shen, C.C., Chi, B.Q., Feng, Y.X., Lin, Y., Guan, H.Z., and You, C.F. Decoupling of stalagmite-derived Asian summer monsoon records from North Atlantic temperature change during marine oxygen isotope stage 5d. Quaternary Research 70, (2008). 315321.Google Scholar
Supplementary material: PDF

Zhang et al. supplementary material

Supplementary Material

Download Zhang et al. supplementary material(PDF)
PDF 450.3 KB