Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T01:34:27.108Z Has data issue: false hasContentIssue false

The deglaciation and neoglaciation of Upernavik Isstrøm, Greenland

Published online by Cambridge University Press:  20 January 2017

Jason P. Briner*
Affiliation:
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Lena Håkansson
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen-K, Denmark Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Sem Særlands veg 1, N-7491 Trondheim, Norway
Ole Bennike
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen-K, Denmark
*
*Corresponding author. E-mail address:[email protected] (J.P. Briner).

Abstract

We constrain the history of the Greenland Ice Sheet margin during the Holocene at Upernavik Isstrøm, a major ice stream in northwestern Greenland. Radiocarbon-dated sediment sequences from proglacial-threshold lakes adjacent to the present ice margin constrain deglaciation of the sites to older than 9.6 ± 0.1 ka. This age of deglaciation is confirmed with 10Be ages of 9.9 ± 0.1 ka from an island adjacent to the historical ice position. The lake sediment sequences also constrain the ice margin to have been less extensive than it is today for the remainder of the Holocene until ~ 1100 to ~ 700 yr ago, when it advanced into two lake catchments. The ice margin retreated back out of these lake catchments in the last decade. The early Holocene deglaciation in Melville Bugt, one of few locations around Greenland where a vast stretch of the current ice margin is marine-based, preceded deglaciation in most other parts of Greenland. Earlier deglaciation in this ice-sheet sector may have been caused by additional ablation mechanisms that apply to marine-based ice margins. Furthermore, despite ice-sheet models depicting this sector of Greenland as relatively stable throughout the Holocene, our data indicate a > 20 km advance-retreat cycle within the last millennium.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Current address: Department of Geology, Lund University, S"lvegatan 12, S-22362 Lund, Sweden.

References

Alley, R., Andrews, J., Brigham-Grette, J., Clarke, G., Cuffey, K., Fitzpatrick, J., Funder, S., Marshall, S., Miller, G., Mitrovica, J., (2010). History of the Greenland ice sheet: paleoclimatic insights. Quaternary Science Reviews 29, 17281756.CrossRefGoogle Scholar
Badding, M.E., Briner, J.P., Kaufman, D.S., (2013). 10Be ages of late Pleistocene deglaciation and Neoglaciation in the north-central Brooks Range, Arctic Alaska. Journal of Quaternary Science 28, 95102.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bennike, O., (2002). Late Quaternary history of Washington land, North Greenland. Boreas 31, 260272.CrossRefGoogle Scholar
Bennike, O., (2008). An early Holocene Greenland whale from Melville Bugt, Greenland. Quaternary Research 69, 7276.Google Scholar
Bennike, O., Björck, S., (2002). Chronology of the last recession of the Greenland ice sheet. Journal of Quaternary Science 17, 211219.Google Scholar
Bennike, O., Sparrenbom, C.J., (2007). Dating of the Narssarssuaq stade in southern Greenland. The Holocene 17, 279282.CrossRefGoogle Scholar
Bennike, O., Weidick, A., (2001). Late Quaternary history around Nioghalvfjerdsfjorden and Jøkelbugten, North-East Greenland. Boreas 30, 205227.Google Scholar
Bennike, O., Anderson, N.J., McGowan, S., (2010). Holocene palaeoecology of south-west Greenland inferred from macrofossils in sediments of an oligosaline lake. Journal of Paleolimnology 43, 787798.Google Scholar
Briner, J.P., Bini, A.C., Anderson, R.S., (2009). Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. Nature Geoscience 2, 496499.Google Scholar
Briner, J.P., Stewart, H.A.M., Young, N.E., Phillips, W., Losee, S., (2010). Using proglacial-threshold lakes to constrain fluctuations of the Jakobshavn Isbræ ice margin, western Greenland, during the Holocene. Quaternary Science Reviews 29, 38613874.Google Scholar
Briner, J.P., Young, N.E., Thomas, E.K., Stewart, H.A.M., Losee, S., Truex, S., (2011). Varve and radiocarbon dating support the rapid advance of Jakobshavn Isbræ during the Little Ice Age. Quaternary Science Reviews 30, 24762486.Google Scholar
Briner, J.P., Young, N.E., Goehring, B.M., Schaefer, J.M., (2012). Constraining Holocene 10Be production rates in Greenland. Journal of Quaternary Science 27, 26.CrossRefGoogle Scholar
Clague, J.J., Menounos, B., Osborn, G., Luckman, B.H., Koch, J., (2009). Nomenclature and resolution in Holocene glacial chronologies. Quaternary Science Reviews 28, 22312238.CrossRefGoogle Scholar
Csatho, B., Schenk, T., van der Veen, C.J., Krabill, W.B., (2008). Intermittent thinning of Jakobshavn Isbræ, West Greenland, since the Little Ice Age. Journal of Glaciology 54, 131144.CrossRefGoogle Scholar
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W., Balling, N., (1998). Past temperatures directly from the Greenland Ice Sheet. Science 282, 268271.Google Scholar
England, J.H., Lakeman, T.R., Lemmen, D.S., Bednarski, J.M., Stewart, T.G., Evans, D.J.A., (2008). A millennial-scale record of Arctic Ocean sea ice variability and the demise of the Ellesmere Island ice shelves. Geophysical Research Letters 35, L19502.Google Scholar
Escher, J.C., (1985). Geological map of Greenland 1:5,000,000, Upernavik Isfjord. Copenhagen: Geological Survey of Greenland.Google Scholar
Fisher, D., Zheng, J., Burgess, D., Zdanowicz, C., Kinnard, C., Sharp, M., Bourgeois, J., (2012). Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change 84–85, 37.Google Scholar
Fredskild, B., (1985). The Holocene vegetational development of Tugtuligssuaq and Qeqertat, Northwest Greenland. Meddelelser om Grønland. Geoscience 14, (20 pp.).Google Scholar
Funder, S., (1978). Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland. Bulletin. Grønlands Geologiske Undersøgelse 129, 66.CrossRefGoogle Scholar
Funder, S., (1982). 14C-dating of samples collected during the 1979 expedition to North Greenland. Rapport Grønlands Geologiske Undersøgelse 110, 914.Google Scholar
Funder, S., Hansen, L., (1996). The Greenland Ice Sheet: a model for its culmination and decay during and after the Last Glacial Maximum. Bulletin of the Geological Society of Denmark 42, 137152.Google Scholar
Funder, S., Kjeldsen, K.K., Kjær, K.H., Ó Cofaigh, C., (2011). The Greenland Ice Sheet during the past 300,000 years: a review. Ehlers, J., Gibbard, P.L. Quaternary Glaciations: Extent and Chronology, Developments in Quaternary Science 2. Elsevier, Amsterdam.699713.Google Scholar
Griggs, J.A., Bamber, J.L., Hurkmans, R.T.W.L., Dowdeswell, J.A., Gogineni, S.P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., Steinhage, D., (2012). A new bed elevation dataset for Greenland. The Cryosphere Discussions 6, 48294860.Google Scholar
Håkansson, S., (1976). University of Lund radiocarbon dates IX. Radiocarbon 18, 290320.Google Scholar
Holland, D.M., Thomas, R.H., de Young, B., Ribergaard, M.H., Lyberth, B., (2008). Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience 1, 659664.Google Scholar
Hughes, A.L.C., Rainsley, E., Murray, T., Fogwill, C.J., Schnabel, C., Xu, S., (2012). Rapid response of Helheim Glacier, southeast Greenland, to early Holocene climate warming. Geology 40, 427430.CrossRefGoogle Scholar
Jenkins, A., Dutriux, P., Jacobs, S.S., McPhail, S.D., Perrett, J.R., Webb, A.T., White, D., (2010). Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience 3, 468472.Google Scholar
Kaplan, M.R., Wolfe, A.P., Miller, G.H., (2002). Holocene environmental variability in southern Greenland inferred from lake sediments. Quaternary Research 58, 149159.Google Scholar
Kelley, S.E., Briner, J.P., Young, N.E., Babonis, G.S., Csatho, B., (2012). Maximum late Holocene extent of the western Greenland Ice Sheet during the late 20th century. Quaternary Science Reviews 56, 8998.Google Scholar
Kelly, M., Bennike, O., (1992). Quaternary geology of western and central north Greenland. Rapport Grønlands Geologiske Undersøgelse 153, (34 pp.).Google Scholar
Knudsen, K.L., Stabell, B., Seidenkrantz, M.-S., Eiríksson, J., Blake jr., W., (2008). Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes. Boreas 37, 346376.Google Scholar
Lal, D., (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Landvik, J.Y., Weidick, A., Hansen, A., (2001). The glacial history of the Hans Tausen Iskappe and the last glaciation of Peary Land. North Greenland. Meddelelser om Grønland. Geoscience 39, 2744.Google Scholar
Larsen, N.K., Kjær, K.H., Olsen, J., Funder, S., Kjeldsen, K.K., Nørgaard-Pedersen, N., (2011). Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet. Quaternary Science Reviews 30, 31713180.Google Scholar
Larsen, N.K., Funder, S., Kjær, K.H., Kjeldsen, K.K., Knudsen, M.F., Linge, H., (2013). Rapid early Holocene ice retreat in West Greenland. Quaternary Science Reviews (in press).Google Scholar
Levy, L.B., Kelly, M.A., Howley, J.A., Virginia, R.A., (2012). Age of Ørkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene. Quaternary Science Reviews 52, 15.Google Scholar
Long, A.J., Woodroffe, S.A., Dawson, S., Roberts, D.H., Bryant, C.L., (2009). Late Holocene relative sea level rise and the Neoglacial history of the Greenland Ice Sheet. Journal of Quaternary Science 24, 345359.Google Scholar
Maurer, M.K., Menounos, B., Lucman, B.H., Osborn, G., Clague, J.J., Beedle, M.J., Smith, R., Atkinson, N., (2012). Late Holocene glacier expansion in the Cariboo and northern Rocky Mountains, British Columbia, Canada. Quaternary Science Reviews 51, 7180.Google Scholar
McGowan, S., Ryves, D.B., Anderson, N.J., (2003). Holocene records of effective precipitation in West Greenland. The Holocene 13, 239249.Google Scholar
Nielsen, K., Khan, S.A., Korsgaard, N.J., Kjær, K.H., Wahr, J., Bevis, M., Sterns, L.A., Timm, L.H., (2012). Crustal uplift due to ice mass variability on Upernavik Isstrøm, west Greenland. Earth and Planetary Science Letters 353–354, 182189.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., McAninch, J., (2007). Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.Google Scholar
Ó Cofaigh, C., Dowdeswell, J.A., Jennings, A.E., Hogan, K.A., Kilfeather, A., Hiemstra, J.F., Noormets, R., Evans, J., McCarthy, D.J., Andrews, J.T., Lloyd, J.M., Moros, M., (2013). An extensive and dynamic ice sheet on the West Greenland shelf during the last glacial cycle. Geology 41, 219222.Google Scholar
Pfeffer, W.T., (2007). A simple mechanism for irreversible tidewater glacier retreat. Journal of Geophysical Research 112, F03S25.Google Scholar
Rignot, E., Koppes, M., Velicogna, I., (2010). Rapid submarine melting of the calving faces of west Greenland glaciers. Nature Geoscience 3, 187191.Google Scholar
Roberts, D.H., Long, A.J., Schnabel, C., Freeman, S., Simpson, M.J.R., (2008). The deglacial history of southeast sector of the Greenland Ice Sheet during the Last Glacial Maximum. Quaternary Science Reviews 27, 15051516.Google Scholar
Rood, D.H., Hall, S., Guilderson, T.P., Finkel, R.C., Brown, T.A., (2010). Challenges and opportunities in high precision Be-10 measurements at CAMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 730732.Google Scholar
Schimmelpfennig, I., Schaefer, J.M., Akçar, N., Ivy-Ochs, S., Finkel, R.C., Schlüchter, C., (2012). Holocene glacier culminations in the western Alps and their hemispheric relevance. Geology 40, 891894.Google Scholar
Simpson, M.J.R., Milne, G.A., Huybrechts, P., Long, A.J., (2009). Calibrating a glaciological model of the Greenland ice sheet from the last glacial maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews 28, 16311657.Google Scholar
Stone, J.O., (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23,75323,759.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (2005). CALIB 5.0. http://calib.qub.ac.uk/calib/ .Google Scholar
Weidick, A., (1958). Frontal variations at Upernaviks Isstrøm in the last 100 years. Meddelelser fra Dansk Geologisk Forening 14, 5260.Google Scholar
Weidick, A., (1968). Observations on some Holocene glacier fluctuations in West Greenland. Meddelelser om Grønland 165, 202.Google Scholar
Weidick, A., (1977). 14C dating of survey material carried out in 1976. Rapport Grønlands Geologiske Undersøgelse 85, 127129.Google Scholar
Weidick, A., (1978). 14C dating of survey material carried out in 1977. Rapport Grønlands Geologiske Undersøgelse 90, 119124.Google Scholar
Weidick, A., (2009). Johan Dahl Land, south Greenland: the end of a 20th century glacier expansion. Polar Record 45, 337350.Google Scholar
Weidick, A., Bennike, O., (2007). Quaternary glaciation history and glaciology of Jakobshavn Isbrae and the Disko Bugt region, West Greenland: a review. Geological Survey of Denmark and Greenland Bulletin 14, 78.Google Scholar
Weidick, A., Oerter, H., Reeh, N., Thomsen, H.H., Thorning, L., (1990). The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 82, 389399.Google Scholar
Weidick, A., Kelly, M., Bennike, O., (2004). Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe. Boreas 33, 284299.Google Scholar
Weidick, A., Bennike, O., Citterio, M., Nørgaard-Pedersen, N., (2012). Neoglacial and historical glacier changes around Kangersuneq fjord in southern West Greenland. Geological Survey of Denmark and Greenland Bulletin 27, 68.Google Scholar
Young, N.E., Briner, J.P., Axford, Y., Csatho, B., Babonis, G.S., Rood, D.H., Finkel, R.C., (2011a). Response of a marine-terminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. Geophysical Research Letters 38, L24701.Google Scholar
Young, N.E., Briner, J.P., Stewart, H.A.M., Axford, Y., Csatho, B., Rood, D.H., Finkel, R.C., (2011b). Response of Jakobshavn Isbræ Greenland, to Holocene climate change. Geology 39, 131134.Google Scholar
Young, N.E., Briner, J.P., Rood, D.H., Finkel, R.C., Corbett, L.B., Bierman, P.R., (2013). Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events. Quaternary Science Reviews 60, 7690.Google Scholar