Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:20:08.506Z Has data issue: false hasContentIssue false

Crustal subsidence inferred from reconstruction of the Pleistocene–Holocene palaeogeography in the northern Lake Inba area, central Japan

Published online by Cambridge University Press:  26 December 2019

Takashi Chiba*
Affiliation:
Faculty of Bioresource Sciences, Akita Prefectural University, 241–438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita-shi, Akita010-0195, Japan
Shigeo Sugihara
Affiliation:
Meiji University, 1–1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101–8301Japan
Yoshiaki Matsushima
Affiliation:
Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa, 250-0031, Japan
Yusuke Arai
Affiliation:
Environmental Planning Bureau, City of Yokohama, Kannai Chuou Building, 2–22 Masagocho, Naka-ku, Yokohama-shi, Kanagawa, 231-0016, Japan
Kunihiko Endo
Affiliation:
Nihon University, 3-25-40 Sakurajosui, Setagaya-Ku, Tokyo, 156-8550, Japan
*
*Corresponding author e-mail address: [email protected] (T. Chiba).

Abstract

To help characterise the palaeogeographic and lacustrine environmental changes that resulted from the Holocene transgression and residual subsidence in the eastern Kanto Plain of central Japan, we analysed four drill cores and reviewed other core data from the southern part of the Lake Inba area. Fossil diatom assemblages yielded evidence of centennial-scale palaeogeographic and salinity responses to sea-level changes since the late Pleistocene. We determined that the seawater incursion into the Lake Inba area during the Holocene transgression occurred at approximately 9000 yr. We also recognised a late Holocene regression event corresponding to the Yayoi regression, considered to have occurred from ca. 3000 to ca. 2000 yr, and a subsequent transgression. Our data clarify some of the palaeogeographic changes that occurred in the Lake Inba area and document an overall trend toward lower salinity in the lake during the regression. In particular, the environment in Lake Inba changed from brackish to freshwater no later than 1000 yr. From the detailed palaeogeographic and palaeo-sea-level reconstruction, we recognised that residual subsidence occurred during the Holocene in this area. Thus, comparison of sea-level reconstructions based on modelling and fossil diatom assemblages is effective in interpreting Holocene long-term subsidence.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chiba, T., 2014. Taphonomy of diatoms and problems of paleoenvironmental reconstruction in coastal areas using diatom assemblages. [In Japanese with English abstract.] Diatom 30, 86103.Google Scholar
Chiba, T., Kanauchi, A., Kamiya, C., Sugihara, S., 2011. Locational environment of Daikatahanawa shell mound and paleo environmental changes in Paleo Inba bay. The Environmental Development and Human Activity 5, 6783.Google Scholar
Chiba, T., Nishimura, Y., Ohtsuka, T., 2018. Fossil diatom assemblages during the last millennium in the Toberi River mouth area, Hokkaido, Japan. Diatom 34, 829.Google Scholar
Chiba, T., Sawai, Y., 2014. Reexamination and updating of diatom species for paleoenvironmental reconstructions. [In Japanese with English abstract.] Diatom 30, 1730.Google Scholar
Chiba, T., Sugihara, S., Matsushima, Y., Arai, Y., Endo, K., 2016. Reconstruction of Holocene relative sea-level change and residual uplift in the Lake Inba area, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 982996.CrossRefGoogle Scholar
Chiba Prefectural Environmental Research Center, 2016. Wide-area river improvement and integrated river environmental improvement project: Class A river, Lake Inba (accessed April 2019). https://www.pref.chiba.lg.jp/wit/.Google Scholar
Clark, J.A., Farrell, W.E., Peltier, W.R., 1978. Global changes in postglacial sea level: A numerical calculation. Quaternary Research 9, 265287.CrossRefGoogle Scholar
Cocquyt, C., Olodo, I., Abou, Y., 2018. Transfer of Navicula elegantoides Hustedt to the genus Pinnunavis (Naviculaceae, Bacillariophyta). Notulae Algarum 66, 14.Google Scholar
Editorial Committee of the History of Noda-shi, 2010. Paleoenvironmental Studies and Borehole Logs in Noda-shi. [In Japanese.] Vol.1, Editorial Committee of the History of Noda-shi, Chiba.Google Scholar
Endo, K., Kosugi, M., Matsushita, M., Miyaji, N., Hishida, R., Takano, T., 1989. Holocene environmental history in and around the Paleo-Nagareyama Bay, central Kanto Plain. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 28, 6177.CrossRefGoogle Scholar
Endo, K., Sekimoto, K., Takano, T., 1982. Holocene stratigraphy and paleoenvironments in the Kanto Plain, in relation to the Jomon Transgression. Proceedings of the Institute of Natural Sciences, Nihon University 21, 3754.Google Scholar
Endo, K., Sekimoto, K., Takano, T., Suzuki, M., Hirai, Y., 1983. Holocene and latest Pleistocene deposits in the Kanto Plain, Central Japan. [In Japanese with English abstract.] Uaban Kubota 21, 2643.Google Scholar
García-Artola, A., Stéphan, P., Cearreta, A., Kopp, R.E., Khan, N.S., Horton, B.P., 2018. Holocene sea-level database from the Atlantic coast of Europe. Quaternary Science Reviews 196, 177192.CrossRefGoogle Scholar
Hashima, A., Sato, T., Sato, H., Asao, K., Furuya, H., Yamamoto, S., Kameo, K., et al. , 2016. Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc. Tectonophysics 679, 114.CrossRefGoogle Scholar
Hasle, G.R., 1978. Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve. Phycologia 17, 263292.CrossRefGoogle Scholar
Horton, B.P., Shennan, I., Bradley, S.L., Cahill, N., Kirwan, M., Kopp, R.E., Shaw, T.A., 2018. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nature Communications 9, 2687. http://dx.doi.org/10.1038/s41467-018-05080-0.CrossRefGoogle ScholarPubMed
Idei, M., Osada, K., Sato, S., Toyoda, K., Nagumo, T., Mann, D.G., 2012. Gametogenesis and Auxospore Development in Actinocyclus (Bacillariophyta). PloS One 7, e41890. http://dx.doi.org/10.1371/journal.pone.0041890.CrossRefGoogle Scholar
Inada, A., Ohama, K., Shimamura, K., 1998. Vegetational history since the latter period of the last glacial age around the lowland along the Shinkawa river in Yachiyo City, Chiba Prefecture, Central Japan. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 37, 283298.CrossRefGoogle Scholar
Inada, A., Saito, T., Nirei, T., Nishimura, S., Ohama, K., Kaneko, S., Kaneko, Y., Shimamura, K., Shimizu, S., 2008. Holocene vegetational history and rice cultivation in the Shinkawa lowland, Yachiyo City, Chiba Prefecture, central Japan. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 47, 313327.CrossRefGoogle Scholar
Inada, A., Saito, T., Ohama, K., Kaneko, S., Shimamura, K., Shimizu, S., Natsuaki, M., 2004. Paleoenvironmental transitions in the Shinkawa Lowland in Yachiyo City, Chiba Prefecture, Central Japan, since ca. 4,500 yr BP. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 43, 114.CrossRefGoogle Scholar
Inazaki, T., Ota, Y., Maruyama, S., 2014. The largest and longest project in Japan–spanning over 400 years river improvement works in the Kanto Plain and constraints of tectonic setting. [In Japanese with English abstract.] Journal of Geography (Chigaku Zasshi) 123, 401433.CrossRefGoogle Scholar
Ishihara, T., Toshihiko Sugai, T., Hachinohe, S., 2012. Fluvial response to sea-level changes since the latest Pleistocene in the near-coastal lowland, central Kanto Plain, Japan. Geomorphology 147–148, 4960.CrossRefGoogle Scholar
Itoh, N., Naya, T., Kanai, Y., Kumon, F, Amano, K., 2017. Historical changes in the aquatic environment and input of polycyclic aromatic hydrocarbons over 1000 years in Lake Kitaura, Japan. Limnology 18, 5162.CrossRefGoogle Scholar
Iwasaki, N., Sprague, S.D., Koyanagi, T., Furuhashi, T., Yamamoto, S., 2009. Development of the historical agro-environment browsing system constructed by FOSS4G. Theory and Applications of GIS 17, 8392CrossRefGoogle Scholar
Kaizuka, S., 1987. Quaternary crustal movements in Kanto, Japan. [In Japanese with English abstract.] Journal of Geography (Chigaku Zasshi) 96, 223240.CrossRefGoogle Scholar
Kaizuka, S., Koike, K., Endo, K., Yamazaki, H., Suzuki, T. (Eds.), 2000. Regional Geomorphology of the Japanese Islands, Vol.4, Geomorphology of Kanto and Izu-Ogasawara. University of Tokyo Press, Tokyo.Google Scholar
Kashima, K., Nemoto, K., Kobayashi, S., 1988. The Holocene successive change of diatom assemblages of drilling core samples in Lake Tega, Kanto Plain, Japan. Diatom 4, 6165.Google Scholar
Kelsey, H.M., Nelson, A.R., Hemphill-Haley, E., Witter, R.C., 2005. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. GSA Bulletin 117, 10091032.CrossRefGoogle Scholar
Khan, N.S., Ashe, E., Shaw, T.A., Vacchi, M., Walker, J., Peltier, W.R., Kopp, R.E., Horton, B.P., 2015. Holocene relative sea-level changes from near-, intermediate-, and far-field locations. Current Climate Change Reports 1, 247262.CrossRefGoogle Scholar
Kikuchi, T., 1969. Geomorphic development of the Kashima Lowland, Ibaraki Prefecture. Geographical Reports of Tokyo Metropolitan University 4, 2332.Google Scholar
Koike, K., Machida, H., 2001. Atlas of Quaternary Marine Terraces in the Japanese Islands. University of Tokyo Press, Tokyo.Google Scholar
Komatsubara, J., Ishihara, Y., Ishihara, T., Kazaoka, O., Mizuno, K., 2017. Relationship between liquefaction damage and structure of lithological heterogeneity of Holocene postglacial deposits in the downstream basin of the Tone River, central Japan. [In Japanese with English abstract.] Journal of Geography (Chigaku Zasshi) 126, 715730CrossRefGoogle Scholar
Krammer, K., 2000. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 1. The genus Pinnularia. ARG Gantner-Verlag KG, Ruggell, Liechtenstein.Google Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. 1. Naviculaceae. In: Süsswasserflora von Mitteleuropa. Ettl, H., Gerloff, J., Heyning, H., Mollenhauer, D. (Eds.), Gustav Fischer Verlag, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Sururellaceae. In: Süßwasserflora von Mitteleuropa. Ettl, H., Gerloff, J., Heyning, H., Mollenhauer, D. (Eds.), Gustav Fischer Verlag, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Süßwasserflora von Mitteleuropa. Ettl, H., Gerloff, J., Heyning, H., Mollenhauer, D. (Eds.), Gustav Fischer Verlag, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Süßwasserflora von Mitteleuropa. Ettl, H., Gerloff, J., Heyning, H., Mollenhauer, D. (Eds.), Gustav Fischer Verlag, Jena.Google Scholar
Kubo, Y., Syvitski, J.P.M., Tanabe, S., 2006. An application of the hydrologic model HYDROTREND to the paleo-Tonegawa: numerical estimates of sediment discharge for the last 13,000 years. [In Japanese with English abstract.] The Journal of the Geological Society of Japan 112, 719729.CrossRefGoogle Scholar
Kusuda, T., Nirei, H., 1994. Geological history and characteristics of Imbanuma Reservoir. [In Japanese.] Inbanuma-Shizen to Bunka- No.1, 16.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111, 1529615303.CrossRefGoogle ScholarPubMed
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic D18O records. Paleoceanography 20. http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Masubuchi, K., Sugihara, S., 2010. Holocene paleoenvironmental changes and the formation of the shell mounds in the lower area of Tama River. [In Japanese.] The Environmental Development and Human Activity 4, 6783.Google Scholar
Matsuda, T., Ota, Y., Ando, M., Yonekura, N., 1978. Fault mechanism and recurrence time of major earthquakes in southern Kanto district, Japan, as deduced from coastal terrace data. Geological Society of America Bulletin 89, 16101618.2.0.CO;2>CrossRefGoogle Scholar
Nagumo, T., 2003. Taxonomic studies of the subgenus Amphora Cleve of the genus Amphora (Bacillariophyceae) in Japan. Bibliotheca Diatomologica Vol.49. J. Cramer, Berlin and Stuttgart.Google Scholar
Naish, T.R., Wilson, G.S., 2009. Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Philosophical Transactions of the Royal Society A 367, 169187.CrossRefGoogle Scholar
Nakada, M., Lambeck, K., 1989. Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophysical Journal International 96, 497517.CrossRefGoogle Scholar
Nakata, T., Koba, M., Imaizumi, T., Jo, W.R., Matsumoto, H., Takeshi Suganuma, T., 1980. Holocene marine terraces and seismic crustal movements in the southern part of Boso Peninsula, Kanto, Japan. [In Japanese with English abstract.] Geographical Review of Japan 53, 2944.CrossRefGoogle Scholar
National Institute for Agro-Environmental Sciences, 2016. Historical Agro-Environmental Browsing System and Dissemination of Rapid Survey Map (accessed April 2019). http://habs.dc.affrc.go.jp.Google Scholar
Naya, T., 2016. Paleoenvironmental changes reconstructed from lake bottom sediment records: paleolimnological studies on Lake Kasumigaura, Ibaraki Prefecture, Japan. [In Japanese.] Journal of Japan Society on Water Environment 39, 270273.Google Scholar
Naya, T., Tanimura, Y., Kanai, Y., Kumon, F., Amano, K., 2007. Natural and anthropogenic aquatic environmental changes reconstructed by paleolimnological analyses in Lake Kitaura, central Japan. Journal of Paleolimnology 37, 547563.CrossRefGoogle Scholar
Noda, A., Miyauchi, T., Sato, T., Matsu'ura, M., 2018. Modelling and simulation of Holocene marine terrace development in Boso Peninsula, central Japan. Tectonophysics 731–732, 139154.CrossRefGoogle Scholar
Okuno, J., Nakada, M., Ishii, M., Miura, H., 2014. Vertical tectonic crustal movements along the Japanese coastlines inferred from late Quaternary and recent relative sea-level changes. Quaternary Science Reviews 91, 4261.CrossRefGoogle Scholar
Ota, Y., Matsushima, Y., Miyoshi, M., Kashima, K., Maeda, Y., Moriwaki, H., 1985. Holocene environmental changes in the Choshi Peninsula and its surroundings, easternmost Kanto, central Japan. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 24, 1329.CrossRefGoogle Scholar
Ota, Y., Umitsu, M., Matsushima, Y., 1990. Recent Japanese research on relative sea level changes in the Holocene and related problems review of studies between 1980 and 1988. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 29, 3148.CrossRefGoogle Scholar
Oya, M., 1969. Geomorphology and flooding of the plain in the middle and lower reaches of the Tone River in Kanto Plain. [In Japanese with English abstract.] Journal of Geography (Chigaku Zasshi) 78, 341354.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., et al. , 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Saito, Y., 1995. High-resolution sequence stratigraphy of an incised-valley fill in a wave- and fluvial-dominated setting: latest Pleistocene-Holocene examples from the Kanto Plain, central Japan. The Memoirs of the Geological Society of Japan 45, 76100.Google Scholar
Saito, Y., Ikehara, K., Tamura, T., 2016. Coastal geology and oceanography. In: Moreno, T., Wallis, S.R., Kojima, T., Gibbons, W. (Eds), The Geology of Japan. Geological Society of London, London, pp. 409430.Google Scholar
Saito, Y., Inouchi, Y., Yokota, S., 1990. Coastal lagoon evolution influenced by Holocene sea-level changes, Lake Kasumigaura, Central Japan. [In Japanese with English abstract.] The Memoirs of the Geological Society of Japan 36, 103118.Google Scholar
Sato, H., Okuno, J.Nakada, M., Maeda, Y., 2001. Holocene uplift derived from relative sea-level records along the coast of western Kobe, Japan. Quaternary Science Reviews 20, 14591474.CrossRefGoogle Scholar
Sawai, Y., 2001. A review on tidal-wetland diatoms as a paleo-sea-level reconstruction at Japanese estuaries. Japanese Journal of Phycology 49, 185191.Google Scholar
Sawai, Y., Nagumo, T., 2003. Diatom (Bacillariophyceae) flora of salt marshes along the Pacific coast of eastern Hokkaido, northern Japan. Bulletin of the Nippon Dental University General Education 32, 93108Google Scholar
Shennan, I., 1982. Interpretation of Flandrian sea-level data from the Fenland, England. Proceedings of the Geologists' Association 93, 5363.CrossRefGoogle Scholar
Shishikura, M., 2003. Cycle of interplate earthquake along the Sagami Trough, deduced from tectonic geomorphology. [In Japanese with English abstract.] Bulletin of the Earthquake Research Institute 78, 245254.Google Scholar
Shishikura, M., 2014. History of the paleo-earthquakes along the Sagami Trough, central Japan: review of coastal paleo-seismological studies in the Kanto region. Episodes 37, 246257.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC. Radiocarbon 35, 137189.CrossRefGoogle Scholar
Sugihara, S., 1970. Geomorphological developments of the western Shimosa upland in Chiba Prefecture, Japan. Geographical Review of Japan 43, 703718 (in Japanese with English abstract).CrossRefGoogle Scholar
Sugihara, S., Kurozumi, T., Horikoshi, M., 2011. Fundamental geological survey for paleoenvironmental reconstruction in Lake Inba area. The Environmental Development and Human Activity 5, 3266.Google Scholar
Sugimura, A., Naruse, Y., 1954. Changes in sea level, seismic upheavals, and terraces in the southern Kanto region, Japan (I). Journal of Geology and Geography 24, 101113.Google Scholar
Takada, T., Uwagawa, M., Asada, K., Sato, N., Kudara, T., 1971. Research, design and construction of the embankment of the Lake Inba area. [In Japanese.] Journal of the Agricultural Engineering Society, Japan 39, 520.Google Scholar
Tanabe, S., 2019. Formation mechanisms of the post-LGM incised-valley fills beneath the Tokyo and Nakagawa lowlands, central Japan. [In Japanese with English abstract.] The Journal of the Geological Society of Japan 125, 5572.CrossRefGoogle Scholar
Tanabe S., Miyata, Nakashima R., Y., Mizuno, K., 2014. Result of sediment core analysis of the post-LGM incised-valley fills in the left bank area of the Tone River. [In Japanese with English abstract.] Reports of Research and Investigation on Multiple Geological Hazards Caused by Huge Earthquakes, GSJ Interim Report 66, 297318.Google Scholar
Tanabe, S., Nakanishi, T., Ishihara, Y., Nakashima, R., 2015. Millennial-scale stratigraphy of a tide-dominated incised valley during the last 14 kyr: spatial and quantitative reconstruction in the Tokyo Lowland, central Japan. Sedimentology 62, 18371872.CrossRefGoogle Scholar
Tanabe, S., Nakashima, R., 2016. Lithofacies, biofacies and radiocarbon dates of the Alluvium in core sediments obtained from the Tamagawa Lowland, central Japan. [In Japanese with English abstract.] Annual Report of Investigations on Geology and Active Faults in the Coastal Zone of Japan (FY2015), GSJ Interim Report 71, 109120.Google Scholar
Tanabe, S., Tateishi, M., Shibata, Y., 2009. The sea-level record of the last deglacial in the Shinano River incised-valley fill, Echigo Plain, central Japan. Marine Geology 266, 223231.CrossRefGoogle Scholar
Tanaka, Y., 1984. Salinity tolerance of the brackish-water Clam, Cobicula japonica Prime. Bulletin of National Research Institute of Aquaculture 6, 2932.Google Scholar
Tani, K., 2015. Proceedings of the General Meeting of the Association of Japanese Geographers. The Association of Japanese Geographers, Tokyo.Google Scholar
Tani, K., 2016. Web Site to Draw Contour Lines of Japan (accessed April 2019). http://ktgis.net/lab/etc/webcontour/.Google Scholar
Tanigawa, K., Hyodo, M., Sato, H., 2013. Holocene relative sea-level change and rate of sea-level rise from coastal deposits in the Toyooka Basin, western Japan. The Holocene 23, 10391051.CrossRefGoogle Scholar
Tanimura, Y., Sato, H., 1997. Pseudopodosira kosugii: a new Holocene diatom found to be a useful indicator to identify former sea-levels. Diatom Research 12, 357368.CrossRefGoogle Scholar
Tsutsui, T., 1990. Three-dimensional subsurface structure beneath the Hino river fiat, south-east shore of Lake Biwa, central Japan. Journal of Physics of the Earth 38, 403429.CrossRefGoogle Scholar
Vacchi, M., Engelhart, S.E., Nikitina, D., Ashe, E.L., Peltier, W.R., Roy, K., Kopp, R.E., Horton, B.P., 2018. Postglacial relative sea-level histories along the eastern Canadian coastline. Quaternary Science Reviews 201, 124146.CrossRefGoogle Scholar
Watanabe, T., Tanaka, J., Reid, G., Kumada, M., Nagumo, T., 2013. Fine structure of Delphineis minutissima and D. surirella (Rhaphoneidaceae). Diatom Research 28, 445453.CrossRefGoogle Scholar
Witkowski, A., Lange-Bertalot, H., Metzeltin, D., 2000. Diatom Flora of Marine Coasts 1. In Lange-Bertalot, H., (Ed.), Iconographia Diatomologica Vol.7. Koeltz Scientific Books, Königstein.Google Scholar
Yamaji, N., 2004. “Ikawano-shiri” and “Katorino-Umi”. [In Japanese.] Kodaikotsu-Kenkyu 13, 320.Google Scholar
Yasuda, Y., 1982. Pollen analytical study of the sediment from the Lake Mikata in Fukui Prefecture, Central Japan. [In Japanese with English abstract.] The Quaternary Research (Daiyonki-Kenkyu) 21, 255271.CrossRefGoogle Scholar
Yokoyama, Y., Nakada, M., Maeda, Y., Nagaoka, S., Okuno, J., Matsumoto, E., Sato, H., Matsushima, Y., 1996. Holocene sea-level change and hydro-isostasy along the west coast of Kyushu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 2947.CrossRefGoogle Scholar
Yokoyama, Y., Okuno, J.I., Miyairi, Y., Obrochta, S., Demboya, N., Makino, Y., Kawahata, H., 2012. Holocene sea-level change and Antarctic melting history derived from geological observations and geophysical modeling along the Shimokita Peninsula, northern Japan. Geophysical Research Letters 39, L13502. http://dx.doi.org/10.1029/2012GL051983.CrossRefGoogle Scholar
Yonekura, N., 1975. Quaternary tectonic movements in the outer arc of southwest Japan with special reference to seismic crustal deformation. Bulletin of the Department of Geography, University of Tokyo 7, 1971.Google Scholar
Yoshino, K., 1998. Study of shell-mounds in the Middle and Latter Jomon period on Pakeo-Kinu bay by analyzing the composition of shellfish. Kaizuka-kenkyu (The shell mound research) 3, 1558.Google Scholar
Supplementary material: File

Chiba et al. supplementary material

Chiba et al. supplementary material 1

Download Chiba et al. supplementary material(File)
File 13 KB
Supplementary material: Image

Chiba et al. supplementary material

Chiba et al. supplementary material 2

Download Chiba et al. supplementary material(Image)
Image 43.6 MB
Supplementary material: Image

Chiba et al. supplementary material

Chiba et al. supplementary material 3

Download Chiba et al. supplementary material(Image)
Image 37.7 MB
Supplementary material: Image

Chiba et al. supplementary material

Chiba et al. supplementary material 4

Download Chiba et al. supplementary material(Image)
Image 4.7 MB