Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T01:39:43.789Z Has data issue: false hasContentIssue false

Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo

Published online by Cambridge University Press:  20 January 2017

Valérie Plagnes
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS 1572, avenue de la Terrasse, 91198 Gif/Yvette Cedex, France
Christiane Causse
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS 1572, avenue de la Terrasse, 91198 Gif/Yvette Cedex, France
Michel Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS 1572, avenue de la Terrasse, 91198 Gif/Yvette Cedex, France
Hélène Valladas
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS 1572, avenue de la Terrasse, 91198 Gif/Yvette Cedex, France
Jean-Michel Chazine
Affiliation:
CNRS/CREDO-Maison Asie-Pacifique, Université de Provence, 3 place Victor Hugo, 13331 Marseille Cedex3, France
Luc-Henri Fage
Affiliation:
La Chapelle, 84220 Goult, France

Abstract

We present the first application of cross-dating (Th/U measured by thermo-ionization mass spectrometry (TIMS) and 14C measured by accelerator mass spectrometry (AMS)) of calcite covering prehistoric paintings. Th/U age estimates of cave drapery range from 9800 to 27,300 yr B.P. while conventional 14C age is estimated between 9900 and 7610 yr B.P. depending on the dead carbon correction. The age discrepancy is attributed to a disturbance of Th/U and/or 14C geochemical systems, showing the limits of the geochronological approach applied to this kind of material. For the Th/U system, the poor consistency of U data (U content, 234U/238U activity ratios) and apparent ages argue for open system conditions. For 14C system, variation of the dead carbon fraction (dcf) and a possible mixing of successive generations of calcite could account for age discrepancy. Nevertheless, one sample shows concordant ages for the two methods. Compatible ages through corrections for open system conditions are assumed for other samples. Then, the cross-dating suggests 9900 yr as the minimum age of the piece of drapery; the underlying painting must be older. This study of rock art demonstrates the presence of a Pleistocene population before 9900 yr in the southeast of Borneo, whereas previously the only population in evidence in this area was of Austronesian type from ∼5000 to 6000 yrs ago.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, J.W., Richards, D.A., Edwards, R.L., Silverman, B.W., Smart, P.L., Donahue, D.J., Hererra-Osterheld, S., Burr, G.S., Calsoyas, L., Jull, A.J.T., and Biddulph, D., (2001). Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292, 2453 2458.CrossRefGoogle ScholarPubMed
Bellwood, P., (1985). Prehistory of Indo-Malaysian Archipelago. Academic Press, Sydney.Google Scholar
Bellwood, P., Fox, J.J., Tryon, D., (1995). The Austronesians. Research School of Pacific studies, Canberra., pp. 96111.Google Scholar
Bischoff, J.L., Rosenbauer, R.J., Tavoso, A., Lumley, H., de, (1988). A test of uranium-series dating of fossil tooth enamel.: results from Tourmal Cave, France., Applied Geochemistry 3, 145151.Google Scholar
Bischoff, J.L., Ludwig, K., Garcia, J.F., Carbonell, E., Vaquero, M., Stafford, T.W., and Jull, A.J.T., (1994). Dating of the basal Aurignacian sandwich at Abric Romani (Catalunya, Spain) by radiocarbon and uranium-series. Journal of Archaeological Science 21, 541 551.Google Scholar
Causse, C., and Vincent, J.S., (1989). Th/U disequilibrium dating of middle and late Pleistocene wood and shelf from Banks and Victoria islands, Artic Canada. Canadian Journal of Earth Sciences 26, 2718 2723.Google Scholar
Chazine, J.M., (1995). Nouvelles perspectives archéologiques à Bornéo, Kalimantan. L’Anthropologie 99, 4 667 670.Google Scholar
Chazine, J.M., and Fage, L.H., (1998). La ligne de Wallace a-t-elle été franchie par les artistes des temps préhistoriques? Deux nouvelles grottes ornées à Bornéo (E Kalimantan). Karstologia 32, 39 46.CrossRefGoogle Scholar
Chazine, J.M., and Fage, L.H., (1999). Préhistoire. découverte de grottes ornées à Bornéo. Archeologia 352, 12 19.Google Scholar
Clottes, J., Chauvet, J.M., Brunel-Deschamps, E., Hillaire, C., Daugas, J.P., Arnold, M., Cachier, H., Evin, J., Fortin, P., Oberlin, C., Tisnérat, N., and Valladas, H., (1995). Les peintures paléolithiques de la grotte Chauvet-Pont d’Arc, à Vallon-Pont-d’ Arc (Ardèche, France). datations directes et indirectes par la méthode du radiocarbone, C.R. Acad. Sci. Paris 320, 1133 1140.Google Scholar
Delagnes, A., Tournepiche, J.-F., Armand, D., Desclaux, E., Diot, M.-F., Ferrier, C., Le Fillâtre, V., and Vandermeersch, B., (1999). Le gisement Pléistocène moyen et supérieur d’Artenac (Saint-Mary, Charente). premier bilan interdisciplinaire. Bull. de la Société Préhistorique Française 96, 469 496.Google Scholar
Fage, L.H., Chazine, J.M., (2001). L’art pariétal des grottes de Kalimantan (Indonésie). Bilan de 10 années de prospection. Découvertes récentes de juin 2001 et perpectives de protection.; in: Actes du IIe Congrès national de Spéléologie, Genève., septembre 2001 Google Scholar
Falguères, C., Lumley, H.de, and Bischoff, J.L., (1992). U-series dates on stalagmitic flowstone E (Riss/Würm interglacial) at grotte du Lazaret, Nice. Quaternary Research 38, 227 233.Google Scholar
Falguères, C., Bahain, J.J., and Saleki, H., (1997). U-series and ESR dating of teeth from Acheulian and Mousterian levels at La Micoque (Dordogne, France). Journal of Archaeological Science 24, 537 545.Google Scholar
Fontugne, M., Arnold, M., Labeyrie, L., Paterne, M., Calvert, S.E., and Duplessy, J.C. (1994). Palaeoenvironment, sapropel chronology and Nile River discharge during the last 20,000 years as indicated by deep sea sediment records in the eastern Mediterranean. in: Bar-Yosef, O., Kra, R.S. (Eds.), Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean, . Radiocarbon., pp. 7588.Google Scholar
Ford, D., and Williams, P., (1989). Karst Geomorphology and Hydrology. Unwin Hyman, London.Google Scholar
Gaven, C., (1975). Déséquilibre dans les familles radioactives de l’uranium et du Thorium au cours des processus volcano-génétiques. Thesis, Pierre et Marie Curie Univ, Paris.Google Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., and Hamelin, B., (2001). Dead carbon in stalagmites. carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica Cosmochimica Acta 65, 3443 3457.CrossRefGoogle Scholar
Genty, D., and Massault, M., (1997). Bomb 14C recorded in laminated speleothems. calculation of dead carbon proportion. Radiocarbon 39, 33 48.Google Scholar
Genty, D., Massault, M., Gilmour, M., Baker, A., Verheyden, S., and Kepens, E., (1999). Calculation of the past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two holocene stalagmites. Radiocarbon 41, 251 270.CrossRefGoogle Scholar
Gill, J.B., Pyle, D.M., and Williams, R.W., (1992). Igneous rocks. Ivanovich, M., and Harmon, R.S. Uranium-Series Disequilibrium. Application to Earth, Marine and Environmental Sciences. second edition Oxford Science, New York. 207 258.Google Scholar
Grün, R., Schwarcz, H.P., and Chadam, J.M., (1988). ESR dating of tooth enamel. coupled correction for U-uptake and U-series disequilibrium. Nuclear Tracks and Radiation Measurements 14, 237 241.Google Scholar
Harrisson, T., (1957). The great cave of Niah. Man 57, 161 166.Google Scholar
Harrisson, T., (1972). The Borneo stone-age in the light of recent research. Sarawak Museum Journal VXX 40-41, 385 412.Google Scholar
McDermott, F., Grün, R., Stringer, C.B., and Hawkesworth, C.J., (1993). Mass-spectrometric U-series dates for Israeli Neanderthal/early modern hominid sites. Nature 363, 252 254.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S., and Prell, W., (1996). The southwest Indian Monsoon over the last 18 000 years. Climate Dynamics 12, 213 225.Google Scholar
Plagnes, V., Causse, Ch., Genty, D., Paterne, M., and Blamart, D. (2002). A climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (South of France). Earth and Planetary Sciences Letters 201, 87103.Google Scholar
Reeder, R.J., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P., and Lanzirotti, A., (2001). Coprecipitation of Uranium (VI) with calcite. XAFS, micro-XAS, and luminescence characterization. Geochimica Cosmochimica Acta 65, 3491 3503.Google Scholar
Roberts, R.G., (1997). Luminescence dating in archaeology. Radiation Measurements 27, 819 892.Google Scholar
Roberts, R.G., Walsh, G., Murray, A., Olley, J., Jones, R., Morwood, M., Tuniz, C., Lawson, E., Macphail, M., Bowdery, D., and Naumann, I., (1997). Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia. Nature 387, 696 699.Google Scholar
Rossignol-Strick, M., (1983). African monsoon, an immediate climate response to orbital insolation. Nature 304, 46 49.Google Scholar
Russ, J., Hyman, M., Shafer, H.J., and Rowe, M.W., (1990). Radiocarbon dating of prehistoric rock paintings by selective oxidation of organic carbon. Nature 348, 710 711.CrossRefGoogle Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., and Duplessy, J.C., (1993). Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322 324.CrossRefGoogle Scholar
Stuiver, M., Riemer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van Der Plicht, J., and Spurk, M., (1998). INTCAL 98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 1041 1083.CrossRefGoogle Scholar
Sturchio, N.C., Antonio, M.R., Soderholm, L., Sutton, S.R., and Brannon, J.C., (1998). Tetravalent uranium in calcite. Science 281, 971 973.Google Scholar
Tisnerat-Labordes, N., Poupeau, J.J., Tannau, J.F., Paterne, M., (2001). Development of an automated system for routine preparation of carbonate samples. Radiocarbon., in press Google Scholar
Turney, C.S.M., Bird, M.I., Fifield, L.K., Roberts, R.G., Smith, M., Dortch, C.E., Grün, R., Lawson, E., Ayliffe, L.K., Miller, G.H., Dortch, J., and Cresswell, R.G., (2001). Early human occupation at Devil’s Lair, Southwestern Australia 50,000 years ago. Quaternary Research 55, 3 13.Google Scholar
Valladas, H., Cachier, H., Arnold, M., and Lorblanchet, M., (1990). AMS C-14 dates for the prehistoric Cougnac Cave paintings, 5e Coll. Intern.. AMS (Poster), Paris.Google Scholar
Valladas, H., Cachier, H., Maurice, P., Bernardo de Quiros, F., Clottes, J., Cabrera Valdés, V., Uzquiamo, P., and Arnold, M., (1992). Direct radiocarbon dates for prehistoric paintings at the Altamira, El Castillo and Niaux caves. Nature 357, 68 70.Google Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U., (1999). East Asian monsoon climate during the Late Pleitocene. high resolution sediment records from the South China Sea. Marine Geology 156, 245 284.Google Scholar