Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T04:19:20.223Z Has data issue: false hasContentIssue false

Cosmogenic Cl-36 surface exposure dating of late Quaternary glacial events in the Cordillera de Talamanca, Costa Rica

Published online by Cambridge University Press:  04 March 2019

Rebecca Potter
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee 37996, USA
Yingkui Li*
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee 37996, USA
Sally P. Horn
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee 37996, USA
Kenneth H. Orvis
Affiliation:
Department of Geography, University of Tennessee, Knoxville, Tennessee 37996, USA
*
*Corresponding author e-mail address: [email protected]

Abstract

Geomorphic evidence of past glaciation, such as U-shaped valleys, aretes, glacial lakes, and moraines, is preserved in the highland surrounding Cerro Chirripó in the Cordillera de Talamanca, Costa Rica. Previous work to establish a glacial chronology has focused on relative age dating of moraines and on radiocarbon dating of basal lake sediments to infer the timing of deglaciation. We used cosmogenic 36Cl surface exposure dating to constrain the ages of moraines within two formerly glaciated valleys, the Morrenas and Talari valleys. Forty-nine boulder samples were processed and measured from four moraine complexes in the Morrenas Valley and two moraine complexes in the Talari Valley. The exposure ages of these samples indicate a major glacial event occurred in this area from ~25 to 23 ka, broadly synchronous with the global last glacial maximum. Our results also indicate periods of glacial retreats and standstills from the deglacial period to the Early Holocene (~16–10 ka) before the complete disappearance of glaciers in this highland. These findings provide important insights into the glacial chronology and paleoclimate of tropical America.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowski, U., Bergau, A., Seebach, D., Zech, R., Glaser, B., Sosin, P., Kubik, P.W., Zech, W., 2006. Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews 25, 10801096.Google Scholar
Angel, I., Audemard, F.A., Carcaillet, J., Carrillo, E., Beck, C., Audin, L., 2016. Deglaciation chronology in the Mérida Andes from cosmogenic 10Be dating, (Gavidia valley, Venezuela). Journal of South American Earth Sciences 71, 235247.Google Scholar
Applegate, P.J., Urban, N.M., Keller, K., Lowell, T.V., Laabs, B.J.C., Kelly, M.A., Alley, R.B., 2012. Improving moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quaternary Research 77, 293304.Google Scholar
Applegate, P.J., Urban, N.M., Laabs, B.J.C., Keller, K., Alley, R.B., 2010. Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geoscientific Model Development 3, 297307.Google Scholar
Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenic nuclide exposure dating to glacier chronology, 1990-2010. Quaternary Science Reviews 30, 327.Google Scholar
Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., Schaefer, J.M., 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quaternary Geochronology 4, 93107.Google Scholar
Balco, G., Stone, J.O., Lifton, N., Dunai, T.J., 2008. A complete and easily accessibly means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Barquero, J., Ellenberg, L., 1983. Geomorfologia del Piso Alpino del Chirripó en La Cordillera de Talamanca, Costa Rica. Revista Geográfica de América Central 17–18, 293299.Google Scholar
Barquero, J., Ellenberg, L., 1986. Geomorphologie der alpinen Stufe des Chirripó in Costa Rica. Eiszeitalter und Gegenwart 36, 19.Google Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., Mark, B., 2005. Reconstruction of equilibrium-line altitudes for tropical and subtropical glaciers. Quaternary International 138–139, 821.Google Scholar
Bergoeing, J.P., 1977. Modelado glacier en la Cordillera de Talamanca. Informe Semestral julio-diciembre 1977. Instituto Geográfico Nacional, San José, Costa Rica.Google Scholar
Betts, A.K., Ridgway, W., 1992. Tropical boundary layer equilibrium in the last ice age. Journal of Geophysical Research 97, 25292534.Google Scholar
Borchers, B., Marrero, S.M., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F.M., Schaefer, J., Stone, J.O., 2015. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.Google Scholar
Briner, J.P., Kaufman, D.S., 2008. Late Pleistocene mountain glaciation in Alaska: key chronologies. Journal of Quaternary Science 23, 659670.Google Scholar
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., Caffee, M.W., 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, 11081120.Google Scholar
Briner, J.P., Kaufman, D.S., Werner, A., Caffee, M., Levy, L., Manley, W.F., Kaplan, M.R., Finkel, R.C., 2002. Glacier readvance during the late glacial (Younger Dryas?) in the Ahklun Mountains, southwestern Alaska. Geology 30, 679682.Google Scholar
Bromley, G.R.M., Schaefer, J.M., Winckler, G., Hall, B.L., Todd, C.E., Rademaker, K.M., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28, 514526.Google Scholar
Cane, M.A., 1998. A role for the tropical Pacific. Science 282, 5961.Google Scholar
Carcaillet, J., Angel, I., Carrillo, E., Audemard, F.A., Beck, C., 2013. Timing of the last deglaciation in the Sierra Nevada of the Merida Andes, Venezuela. Quaternary Research 80, 482494.Google Scholar
Castillo-Muñoz, R., 2010. Glaciaciones e Interglaciaciones en Costa Rica. Litografía e Imprenta LIL, San José, Costa Rica.Google Scholar
Chen, Y., Li, Y., Wang, Y., Zhang, M., Cui, Z., Yi, C., Liu, G., 2015. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings. Quaternary Science Reviews 115, 1727.Google Scholar
Chiang, J.C.H., 2009. The tropics in paleoclimate. Annual Review of Earth and Planetary Sciences 37, 263297.Google Scholar
Clark, J., McCabe, A.M., Clark, P.U., McCarron, S., Freeman, S.P.H.T., Maden, C., Xu, S., 2009. Cosmogenic 10Be chronology of the last deglaciation of western Ireland, and implications for sensitivity of the Irish Ice Sheet to climate change. Geological Society of America Bulletin 121, 316.Google Scholar
Crowley, T.J., 2000. CLIMAP SSTs re-revisited. Climate Dynamics 16, 241255.Google Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.Google Scholar
Desilets, D., Zreda, M.G., 2003. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters 206, 2142.Google Scholar
Desilets, D., Zreda, M.G., Prabu, T., 2006. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, 265276.Google Scholar
Driese, S.G., Orvis, K.H., Horn, S.P., Li, Z., Jennings, D.S., 2007. Paleosol evidence for Quaternary uplift and for climate and ecosystem changes in the Cordillera de Talamanca, Costa Rica. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 123.Google Scholar
Dunai, T.J., 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176, 157169.Google Scholar
Dunai, T.J., 2001. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, 197212.Google Scholar
Dunai, T. J., 2010. Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, Cambridge.Google Scholar
Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T., 2005. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20, 759776.Google Scholar
Farerra, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., et al. , 1999. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data I. Vegetation, lake-levels and geochemistry. Climate Dynamics 15, 823856.Google Scholar
Gillespie, A., Molnar, P., 1995. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311364.Google Scholar
Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L., 2009. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be Dating. Quaternary Science Reviews 28, 34483458.Google Scholar
Glasser, N.F., Jansson, K.N., Goodfellow, B.W., Angelis, H., Rodnight, H., Rood, D.H., 2011. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quaternary Research 75, 636646.Google Scholar
Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560.Google Scholar
Grubbs, F.E., 1950. Sample criteria for testing outlying observations. Annals of Mathematical Statistics 21, 2758.Google Scholar
Hall, S.R., Farber, D.L., Ramage, J.M., Rodbell, D.T., Finkel, R.C., Smith, J.A., Mark, B.G., Kassel, C., 2009. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews 28, 29913009.Google Scholar
Hastenrath, S., 1973. On the Pleistocene glaciation of the Cordillera de Talamanca, Costa Rica. Zeitschrift für Gletscherkunde und Glazialgeologie 9, 105121.Google Scholar
Hastenrath, S., 2009. Past glaciation in the tropics. Quaternary Science Reviews 29, 790798.Google Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Schnabel, C., Kaplan, M.R., Naylor, M., Xu, S., 2009. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth and Planetary Science Letters 286, 184197.Google Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Sugden, D.E., Kaplan, M.R., Xu, S., 2010. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quaternary Science Reviews 29, 12121227.Google Scholar
Herrera, W., 2005. El clima de los páramos de Costa Rica. In: Kappelle, M., Horn, S.P. (Eds.), Páramos de Costa Rica. INBIO Press, Santo Domingo, Costa Rica, pp. 113128.Google Scholar
Heyman, J., Stroeven, A.P., Harbor, J., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.Google Scholar
Horn, S.P., 1990. Timing of deglaciation in the Cordillera de Talamanca, Costa Rica. Climate Research 1, 8183.Google Scholar
Horn, S.P., 1993. Postglacial vegetation and fire history in the Chirripó Páramo of Costa Rica. Quaternary Research 40, 107116.Google Scholar
Horn, S.P., Orvis, K.H., Haberyan, K.A., 2005. Limnology of glacial lakes in the Chirripó Paramo of Costa Rica. In: Kappelle, M., Horn, S.P. (Eds.), Páramos de Costa Rica. INBIO Press, Santo Domingo, Costa Rica, pp. 161181.Google Scholar
Islebe, G.A., Hooghiemstra, H., 1997. Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews 16, 589604.Google Scholar
Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.-H., Colose, C., et al. , 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513, 224228.Google Scholar
Kaplan, M.R., Coronato, A., Hulton, N.R.J., Rabassa, J.O., Kubik, P.W., Freeman, S.P.H.T., 2007. Cosmogenic nuclide measurements in southernmost South America and implications for landscape change. Geomorphology 87, 284301.Google Scholar
Kaplan, M.R., Fogwill, C.J., Sugden, D.E., Hulton, N.R.J., Kubik, P.W., Freeman, S.P.H.T., 2008. Southern Patagonia glacial chronology for the Last Glacial period and implications for Southern Ocean climate. Quaternary Science Reviews 27, 284294.Google Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.Google Scholar
Kappelle, M., Horn, S.P., 2005. Páramos de Costa Rica. INBIO Press, Santo Domingo, Costa Rica.Google Scholar
Kappelle, M., Horn, S.P., 2016. The Páramo ecosystem of Costa Rica's highlands. In: Kappelle, M. (Ed.), Costa Rican Ecosystems. University of Chicago Press, Chicago, pp. 492523.Google Scholar
Kaser, G., Osmaston, H., 2002. Tropical Glaciers. Cambridge University Press, Cambridge.Google Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., Stone, J., 2008. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, 846866.Google Scholar
Kull, C., Imhof, S., Grosjean, M., Zech, R., Veit, H., 2008. Late Pleistocene glaciation in the Central Andes: temperature versus humidity control – a case study from the eastern Bolivian Andes (17°S) and regional synthesis. Global and Planetary Change 60, 148164.Google Scholar
Laabs, B.J.C., Munroe, J.S., Best, L.C., Caffee, M.W., 2013. Timing of the last glaciation and subsequent deglaciation in the Ruby Mountains, Great Basin, USA. Earth and Planetary Science Letters 361, 1625.Google Scholar
Lachniet, M.S., 2004. Quaternary glaciation in Guatemala and Costa Rica. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations – Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Science, Vol. 2, Part C. Elsevier, Amsterdam, pp. 135138.Google Scholar
Lachniet, M.S., 2007. Glacial geology and geomorphology. In: Bundschuh, J., Alvarado, G.E. (Eds.), Central America: Geology, Resources, and Hazards. Vol. 1. Taylor and Francis/Balkema, Leiden, the Netherlands, pp. 171184.Google Scholar
Lachniet, M.S., Roy, A.J., 2011. Costa Rica and Guatemala. In Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science 15. Elsevier, Amsterdam, the Netherlands, pp. 843848.Google Scholar
Lachniet, M.S., Seltzer, G.O., 2002. Late Quaternary glaciation of Costa Rica. Geological Society of America Bulletin 114, 547558.Google Scholar
Lachniet, M.S., Vázquez-Selem, L., 2005. Last glacial maximum equilibrium line altitudes in the CircumCaribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quaternary International 138–139, 129144.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Lane, C.S., Horn, S.P., 2013. Terrestrially-derived n-alkane δD evidence of shifting Holocene paleohydrology in highland Costa Rica. Arctic, Antarctic, and Alpine Research 45, 342349.Google Scholar
Lane, C.S., Horn, S.P., Mora, C.L., Orvis, K.H., Finkelstein, D.B., 2011. Sedimentary stable carbon isotope evidence of late Quaternary vegetation and climate change in highland Costa Rica. Journal of Paleolimnology 45, 323338.Google Scholar
Lea, D.W., 2004. The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. Journal of Climate 17, 21702179.Google Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A., 2003. Synchronicity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.Google Scholar
Lea, D.W., Pak, D.K., Spero, H.J., 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 17191724.Google Scholar
Lee, K.E., Slowey, N.C., 1999. Cool surface waters of the subtropical North Pacific Ocean during the last glacial. Nature 397, 512514.Google Scholar
Li, Y., 2013. Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS approach and field validation. Journal of Mountain Science 10, 355362.Google Scholar
Li, Y., Harbor, J., 2009. Cosmogenic nuclides and geomorphology: theory, limitations and applications. In: Ferrari, D.M., Guiseppie, A.R. (Eds.), Geomorphology and Tectonics. Nova Science, Hauppauge, New York, pp. 133.Google Scholar
Li, Y., Liu, G., Chen, Y., Li, Y., Harbor, J., Stroeven, A.P., Caffee, M., Zhang, M., Li, C., Cui, Z., 2014. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quaternary Science Reviews 98, 723.Google Scholar
Li, Y., Liu, G., Kong, P., Harbor, J., Chen, Y., Caffee, M., 2011. Cosmogenic nuclide constraints on glacial chronology in the source area of the Urumqi River, Tian Shan, China. Journal of Quaternary Science 26, 297304.Google Scholar
Licciardi, J.M., Pierce, K.L., 2008. Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA. Quaternary Science Reviews 27, 814831.Google Scholar
Licciardi, J.M., Schaefer, J.M., Taffart, J.R., Lund, D.C., 2009. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. Science 325, 16771679.Google Scholar
Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160.Google Scholar
Lifton, N., Smart, D.F., Shea, M.A., 2008. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. Earth and Planetary Science Letters 268, 190201.Google Scholar
Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., Pyle, R., 2005. Addressing solar modulation and long-term uncertainties in scaling in situ cosmogenic nuclide production rates. Earth and Planetary Science Letters 239, 140161.Google Scholar
Lin, H.L., Peterson, L.C., Overpeck, J.T., Trumbore, S.E., Murray, D.W., 1997. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: high-resolution records from the anoxic Cariaco Basin, Venezuela. Paleoceanography 12, 415427.Google Scholar
Mark, B.G., Harrison, S.P., Spessa, A., New, M., Evans, D.J.A., Helmens, K.F., 2005. Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138–139, 168201.Google Scholar
Marrero, S.M., Phillips, F.M., Borchers, B., Lifton, N., Aumer, R., Balco, G., 2016a. Cosmogenic nuclide systematics and the CRONUScalc program. Quaternary Geochronology 31, 160-187.Google Scholar
Marrero, S.M., Phillips, F.M., Caffee, M.W., Gosse, J.G., 2016b. CRONUS-Earth cosmogenic 36Cl calibration. Quaternary Geochronology 31, 199219.Google Scholar
Martin, P.S., 1964. Paleoclimatology and a tropical pollen profile. Report of the VIth International Congress on the Quaternary, Warsaw, 1961. Vol. 2. INQUA, Łódź, Poland, pp. 319323.Google Scholar
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R., 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94, 1790717915.Google Scholar
Orvis, K.H., Clark, G.M., Horn, S.P., Kennedy, L.M., 1997. Geomorphic traces of Quaternary climates in the Cordillera Central, Dominican Republic. Mountain Research and Development 17, 323331.Google Scholar
Orvis, K.H., Horn, S.P., 2000. Quaternary glaciers and climate on Cerro Chirripó, Costa Rica. Quaternary Research 54, 2437.Google Scholar
Owen, L.A., Finkel, R.C., Minnich, R.A., Perez, A.E., 2003. Extreme southwestern margin of late Quaternary glaciation in North America: timing and controls. Geology 31, 729732.Google Scholar
Phillips, F.M., Stone, W.D., Fabryka-Martin, J.T., 2001. An improved approach to calculating low-energy cosmic ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175, 689701.Google Scholar
Phillips, F.M., Zreda, M., Plummer, M.A., Elmore, D., Clark, D.H., 2009. Glacial geology and chronology of Bishop Creek and vicinity, eastern Sierra Nevada, California. Geological Society of America Bulletin 121, 10131033.Google Scholar
Pigati, J.S., Zreda, M., Zweck, C., Almasi, P.F., Elmore, D., Sharp, W.D., 2008. Ages and inferred causes of late Pleistocene glaciations on Mauna Kea, Hawai'i. Journal of Quaternary Science 23, 683702.Google Scholar
Porter, S.C., 2001. Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews 20, 10671091.Google Scholar
Putnam, A.E., Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Birkel, S.A., Andersen, B.G., Kaplan, M.R., Finkel, R.C., Schwartz, R., Doughty, A.M., 2013. The Last Glacial Maximum at 44°S documented by a moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quaternary Science Reviews 62, 114141.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rippington, S., Cunningham, D., England, R., 2008. Structure and petrology of the Altan Uul ophiolite: new evidence for a Late Carboniferous suture in the Gobi Altai, southern Mongolia. Journal of the Geological Society 165, 711723.Google Scholar
Rood, D.H., Burbank, D.W., Finkel, R.C., 2011. Chronology of glaciations in the Sierra Nevada, California, from 10Be surface exposure dating. Quaternary Science Reviews 30, 646661.Google Scholar
Roy, A.J., Lachniet, M.S., 2010. Late Quaternary glaciation and equilibrium-line altitudes of the Maya Ice Cap, Guatemala, Central America. Quaternary Research 74, 17.Google Scholar
Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Ivy-Ochs, S., Kubik, P.W., Andersen, B.G., Phillips, F.M., Lowell, T.M., Schluchter, C., 2006. Near-synchronous interhemispheric termination of the Last Glacial Maximum in mid-latitudes. Science 312, 15101513.Google Scholar
Schaefer, J., Denton, G., Kaplan, M., Putnam, A., Finkel, R., Barrell, D., Andersen, B., et al. , 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622625.Google Scholar
Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourlès, D., Burnard, P., Williams, A., 2009. Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quaternary Geochronology 4, 441461.Google Scholar
Seltzer, G.O., 2001. Late Quaternary glaciation in the tropics: future research directions. Quaternary Science Reviews 20, 10631066.Google Scholar
Smith, C.A., Lowell, T.V., Caffee, M.W., 2009. Lateglacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphological evidence for the presence of cold-based glaciers at Nevado Sajama, Bolivia. Journal of Quaternary Science 24, 360372.Google Scholar
Smith, C.A., Lowell, T.V., Owen, L.A., Caffee, M.W., 2011. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75, 110.Google Scholar
Smith, J.A., Mark, B.G., Rodbell, D.T., 2008. The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science 23, 609634.Google Scholar
Smith, J.A., Rodbell, D.T., 2010. Cross-cutting moraines reveal evidence for North Atlantic influence on glaciers in the tropical Andes. Journal of Quaternary Science 25, 243248.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, R.C., 2005. Early local last glacial maximum in the tropical Andes. Science 308, 678681.Google Scholar
Stansell, N.D., Polissar, P.J., Abbott, M.B., 2007. Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes. Quaternary Research 67, 115127.Google Scholar
Stone, J., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323760.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Swanson, T.W., Caffee, M., 2001. Determination of 36Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo Islands, Washington. Quaternary Research 56, 366382.Google Scholar
Thompson, L.G., Davis, M.E., Thompson, E.M., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.N., et al. , 1998. A 25,000 year tropical climate history from Bolivian ice cores. Science 282, 18581864.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., Liu, K-B., 1995. Late glacial stage and Holocene tropical ice core records from Huscarán, Peru. Science 269, 4650.Google Scholar
Vázquez-Selem, L., Heine, K., 2004. Late Quaternary glaciation in Mexico. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations – Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Science, Vol. 2, Part C. Elsevier, Amsterdam, pp. 233242.Google Scholar
Wesnousky, S.G., Aranguren, R., Rengifo, M., Owen, L.A., Caffee, M.W., Murari, M.K., Perez, O.J., 2012. Toward quantifying geomorphic rates of crustal displacement, landscape development, and the age of glaciation in the Venezuelan Andes. Geomorphology 141–142, 99113.Google Scholar
Weyl, R., 1956a. Eiszeitliche gletscherspuren in Costa Rica (Mittelamerika). Zeitschrift für Gletscherkunde und Glazialgeologie 3, 317325.Google Scholar
Weyl, R., 1956b. Spuren eiszeitlicher vergletscherung in der Cordillera de Talamanca Costa Rica (Mittelamerika). Neues Jahrbuch für Geologie und Palaontologie 102, 283294.Google Scholar
Wunsch, O., Calvo, G., Willscher, B., Seyfried, H., 1999. Geologie der alpinen Zone des Chirripó-Massives (Cordillera de Talamanca, Costa Rica, Mittelamerika). Profil 16, 193210.Google Scholar
Young, N.E., Briner, J.P., Kaufman, D.S., 2009. Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Alaska. Journal of Quaternary Science 24, 677689.Google Scholar
Young, N.E., Briner, J.P., Leonard, E.M., Licciardi, J.M., Lee, K., 2011. Addressing climatic and nonclimatic forcing of Pinedale glaciation and deglaciation in the western United States. Geology 39, 171174.Google Scholar
Zech, R., Kull, C., Veit, H., 2006. Late Quaternary glacial history in the Encierro Valley, northern Chile (29°S), deduced from 10Be surface exposure dating. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 277286.Google Scholar
Zech, R., May, J.-H., Kull, C., Ilgner, J., Kubik, P.W., Veit, H., 2008. Timing of the late Quaternary glaciation in the Andes from ~15 to 40° S. Journal of Quaternary Science 23, 635647.Google Scholar
Zech, J., Zech, R., Kubik, P.W., Veit, H., 2009. Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 180190.Google Scholar
Supplementary material: File

Potter et al. supplementary material

Table S1

Download Potter et al. supplementary material(File)
File 34.7 KB