Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T20:57:58.322Z Has data issue: false hasContentIssue false

Constraining the onset of the Holocene “Neoglacial” over the central Italy using tephra layers

Published online by Cambridge University Press:  08 June 2012

Giovanni Zanchetta*
Affiliation:
Dipartimento di Scienze della Terra, University of Pisa, Via S. Maria 53, 56126, Pisa, Italy INGV sez. Pisa, Via della Faggiola 32, 56100, Pisa, Italy IGG-CNR Via Moruzzi, 1, 56100, Pisa, Italy
Carlo Giraudi
Affiliation:
ENEA, C.R. Saluggia, strada per Crescentino, 41, 13040 Vercelli, Italy
Roberto Sulpizio
Affiliation:
CIRISIVU, c/o Dipartimento Geomineralogico, University of Bari, Via Orabona, 4, 70125, Bari, Italy
Michel Magny
Affiliation:
Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Russell N. Drysdale
Affiliation:
Department of Resource Management and Geography, University of Melbourne, Victoria 3010, Australia
Laura Sadori
Affiliation:
Dipartimento di Biologia Vegetale, Università “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
*
Corresponding author at: Dipartimento di Scienze della Terra, University of Pisa, Via S. Maria 53, 56126, Pisa, Italy. Fax: + 39 050 2215800. Email Address:[email protected]

Abstract

A study of six tephra layers discovered in different deposits between 1600 and 2700 m a.s.l. in the Apennine chain in central Italy allowed precise stratigraphic constraints on environmental and climatic changes between ca. 4.5 and 3.8 cal ka BP. Chemical analyses allowed the correlation of these tephra layers with the eruptions of Agnano Mt Spina (AMST) from Phlegrean Field and Avellino (AVT) from Somma–Vesuvius. Major environmental changes in the high mountains of the Central Apennines occurred just after the deposition of the AMST and predate the deposition of the AVT. At this time, renewed growth of the Calderone Glacier occurred, marking the onset of the Apennine “Neoglacial”. The presence of the AMST and AVT enabled us to make a precise, physical correlation with other archives in central Italy. Synchronization of records between sites showed that the period intervening the deposition of the AMST and AVT layers coincided with environmental changes that were not always exactly in phase. This highlights the fact that stratigraphic correlations using only radiocarbon chronologies (the most common method used for dating archives during the Holocene) could produce erroneous correlation of events, giving rise to oversimplified paleoclimatic reconstructions.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., Watts, W.A., McGee, E., and Huntley, B. Holocene environmental variability—the record from Lago Grande di Monticchio, Italy. Quaternary International 88, (2002). 6980.Google Scholar
Andronico, D., and Cioni, R. Contrastino styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazard. Bulletin of Volcanology 64, (2002). 372391.CrossRefGoogle Scholar
Ariztegui, D., Asioli, A., Lowe, J.J., Trincardi, F., Vigliotti, L., Tamburini, F., Chondrogianni, C., Accorsi, C.A., Bandini Mazzanti, M., Mercuri, A.M., Van der Kaars, S., McKenzie, J.A., and Oldfield, F. Palaeoclimate and the formation of sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 215240.Google Scholar
Ariztegui, D., Chondrogianni, C., Lami, A., Guilizzoni, P., and Lafargue, E. Lacustrine organic matter and the Holocene paleoenvironmental record of Lake Albano (central Italy). Journal of Paleolimnology 26, (2001). 283292.Google Scholar
Blaaw, M. Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews (2011). http://dx.doi.org/10.1016/j.quascirev.2010.11.012 Google Scholar
Blockley, S.P.E., Ramsey, C.B., and Pyle, D.M. Improved age modelling and high-precision age estimates of late Quaternary tephras, for accurate paleoclimate reconstruction. Journal of Volcanology and Geothermal Research 177, (2008). 251262.Google Scholar
Bond, G., Kromer, B., Beer, J., Muschler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Calanchi, N., and Dinelli, E. Tephrostratigraphy of the last 170 ka in sedimentary successions from the Adriatic Sea. Journal of Volcanology and Geothermal Research 177, (2008). 8195.CrossRefGoogle Scholar
Calanchi, N., Dinelli, E., Lucchini, F., and Mordenti, A. Chemostratigraphy of late Quaternary sediments from Lake Albano and central Adriatic Sea cores. Memorie Istituto Italiano di Idrobiologia 55, (1996). 247264.Google Scholar
Calanchi, N., Cattaneo, A., Dinelli, E., Gasparotto, G., and Lucchini, F. Tephra layers in Late Quaternary sediments of the central Adriatic Sea. Marine Geology 149, (1998). 191209.CrossRefGoogle Scholar
Caron, B., Sulpizio, R., Zanchetta, G., Siani, G., and Santacroce, R. The Late Holocene to Pleistocene tephrostratigraphic record of lake Orhid (Albania). Comptes Rendus Geoscience 342, (2010). 453466.CrossRefGoogle Scholar
Carrión, J.S., Fernández Jiménez-Moreno, S., Fauquette, S., Gil-Romera, G., González-Sampeériz, P., and Finlayson, C. The historical origins of aridity and vegetation degradation in southeastern Spain. Journal of Arid Environments 74, (2010). 731736.CrossRefGoogle Scholar
Cioni, R., Marianelli, P., and Santacroce, R. Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. Journal of Geophysical Research 103, (1997). 1827718294.CrossRefGoogle Scholar
Coltelli, M., Del Carlo, P., and Vezzoli, L. Stratigraphic constrains for the explosive activity in the past 100 ka at Etna Volcano, Italy. International Journal of Earth Science 89, (2000). 665677.Google Scholar
de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., di Cesare, T., Di Vito, M.A., Fisher, R.V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M., and Southon, J. The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91, (1999). 269301.Google Scholar
Deino, A., Orsi, G., de Vita, S., and Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. Journal of Volcanology and Geothermal Research 133, (2004). 157170.CrossRefGoogle Scholar
Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., De Vita, S., D'Antonio, M., Pappalardo, L., and Piochi, M. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91, (1999). 221246.CrossRefGoogle Scholar
Di Vito, M.A., Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bishop, J., Tema, E., Bonzi, G., and La Forgia, E. The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock-magnetism. Earth and Planetary Science Letters 277, (2009). 408421.CrossRefGoogle Scholar
Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A.E., Pickett, M., Cartwright, I., and Piccini, L. Late Holocene drought responsible for the collapse of Old Wold civilizations is recorded in an Italian cave flowstone. Geology 34, (2006). 101104.CrossRefGoogle Scholar
Giaccio, B., Messina, P., Sposato, A., Voltaggio, M., Zanchetta, G., Galadini, F., Gori, S., and Santacroce, R. Tephra layers from Holocene lake sediments of the Sulmona basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area. Quaternary Science Review 28, (2009). 27102733.Google Scholar
Giardini, M., Sadori, L., Giraudi, C., and Zanchetta, G. Il paesaggio vegetale del Gran Sasso d'Italia (Abruzzo, Appennino Centrale) dopo l'eruzione di Agnano Monte Spina. 105°Congresso Nazionale della Società Botanica Italiana, Milano, 25–28 agosto 2010. (2010). 168 Google Scholar
Giraudi, C. I sedimenti di riempimento di piccole conche sulle morene dell'Appennino Centrale. Un contributo alla comprensione delle variazioni ambientali post-glaciali. Il Quaternario - Italian Journal of Quaternary Science 14, 2 (2001). 131136.Google Scholar
Giraudi, C. The Apennine Glaciations in Italy. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations-Extent and Chronology, Part. I: Europe. 215–224. (2004). Amsterdam. Elsevier, CrossRefGoogle Scholar
Giraudi, C. Late Holocene alluvial events in the Central Apennines (Italy). The Holocene 15, 5 (2005). 768773.Google Scholar
Giraudi, C. Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quaternary Research 64, (2005). 176184.CrossRefGoogle Scholar
Giraudi, C., and Frezzotti, M. Late Pleistocene glacial events in the Central Apennine, Italy. Quaternary Research 48, (1997). 280290.Google Scholar
Giraudi, C., Magny, M., Zanchetta, G., and Drysdale, R.N. The Holocene climate evolution of the Mediterranean Italy: a review of the continental geological data. The Holocene 21, (2011). 105115.Google Scholar
Hunt, J.B., and Hill, P.G. Tephrological implications of beam size-sample-size effects in electron microprobe analysis of glass shards. Journal of Quaternary Science 16, (2001). 105117.CrossRefGoogle Scholar
Keller, J., Ryan, W.B.F., Ninkovich, D., and Altherr, R. Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geological Society of America Bulletin 89, (1978). 591604.Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckheisen, A., and Zanettin, B. Chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, (1986). 745750.Google Scholar
Lowe, D.L. Tephrochronology and its application: a review. Quaternary Geochronology 6, (2011). 107153.CrossRefGoogle Scholar
Lowe, J.J., and Walker, M.J.C. Radiocarbon dating the Last Glacial-Interglacial transition (ca. 14–9 14C ka BP) in terrestrial and marine records: the need for new quality assurance protocols. Radiocarbon 42, (2000). 5368.CrossRefGoogle Scholar
Lowe, J.J., Blockley, S., Trincardi, F., Asioli, A., Cattaneo, A., Matthews, I.P., Pollard, M., and Wulf, S. Age modelling of late Quaternary marine sequences in the Adriatic: towards improved precision and accuracy using volcanic event stratigraphy. Continental Shelf Research 27, (2007). 560582.Google Scholar
Magny, M., de Beaulieu, J.L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., and Leroux, A. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at lake Accesa (Tuscany, Italy). Quaternary Science Reviews 26, (2007). 17361758.Google Scholar
Magny, M., Vannière, B., Zanchetta, G., Fouache, E., Touchais, G., Petrika, L., Coussot, C., Walter-Simonnet, A.-V., and Arnoud, F. Possible complexity of the climatic event around 4300–3800 cal BP in the central and western Mediterranean. The Holocene 19, (2009). 823833.Google Scholar
Marianelli, P., and Sbrana, A. Risultati di misure di standard di minerali e di vetri naturali in microanalisi a dispersione di energia. Atti Società Toscana di Scienze Naturali Memorie, Serie A 105, (1998). 5763.Google Scholar
Oldfield, F., Asioli, A., Accorsi, C.A., Mercuri, A.M., Juggins, S., Langone, L., Rolph, T., Trincardi, F., Wolff, G., Gibbs, Z., Vigliotti, L., Frignani, M., van der Post, K., and Branch, N. A high resolution late Holocene palaeoenvironmental record from the Central Adriatic Sea. Quaternary Science Review 22, (2003). 319342.Google Scholar
Orsi, G., Di Vito, M.A., and Isaia, R. Volcanic hazard assessment at the resteless Campi Flegrei caldera. Bulletin of Volcanology 66, (2004). 514530.CrossRefGoogle Scholar
Passariello, I., Albore Livadie, C., Talamo, P., Lubritto, C., D'Onofrio, A., and Terrasi, F. 14C chronology of Avellino Pumices eruption and timing of human reoccupation of the devasted region. Radiocarbon 51, (2009). 114.CrossRefGoogle Scholar
Passariello, I., Lubritto, C., D'Onofrio, A., Guan, Y., and Terrasi, F. The Somma-Vesuvius complex and the Phlegrean Field caldera: new chronological data of several eruptions of the Copper-Middle Bronze Age period. Nuclear Instruments and Methods in Physics Research B 268, (2010). 10081012.Google Scholar
Ramrath, A., Nowaczyk, N.R., and Negendank, J.F.W. Sedimentological evidence for environmental changes since 34,000 years BP from Lago di Mezzano, central Italy. Journal of Paleolimnology 21, (1999). 423435.CrossRefGoogle Scholar
Ramrath, A., Zolitschka, B., Wulf, S., and Negendank, J.F.W. Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). Quaternary Science Reviews 18, 7 (1999). 977992.Google Scholar
Ramrath, A., Sadori, L., and Negendank, J.F.W. Sediments from Lago di Mezzano, central Italy: a record of Lateglacial/Holocene climatic variations and anthropogenic impact. The Holocene 10, (2000). 8795.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. Intacal09 and Marine09 Radiocarbon Age Calibration Curve 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Phlegrean Fields Rosi, M., and Sbrana, A. CNR Quaderni Ricerca Scientifica. 114, 8 (1987). 1175.Google Scholar
Sadori, L., and Giardini, M. Charcoal analysis, a method to study vegetation and climate of the Holocene: the case of Lago di Pergusa, Sicily (Italy). Geobios 40, (2007). 173180.Google Scholar
Sadori, L., Giraudi, C., Petitti, P., and Ramrath, A. Human impact at Lago di Mezzano (central Italy) during the Bronze Age: a multidisciplinary approach. Quaternary International 113, (2004). 517.Google Scholar
Sadori, L., Jahns, S., and Peyron, O. Mid-Holocene vegetation history of the Central Mediterranean. The Holocene 21, (2011). 117129.Google Scholar
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J., and Joron, J.J. Age and whole rock‐glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research 177, (2008). 118.Google Scholar
Sevink, J., van Bergen, M.J., van der Plicht, J., Feiken, H., Anastasia, C., and Huizinga, A. Robust date for the Bronze Age Avellino eruption (Somma-Vesuvius): 3945 ± 10 calBP (1995 _ 10 calBC). Quaternary Science Review 30, (2011). 10351046.Google Scholar
Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddas, G. Mediterranean Sea surface radiocarbon reservoir age changes since the Last Glacial Maximum. Science 294, (2001). 19171920.Google Scholar
Siani, G., Sulpizio, R., Paterne, M., and Sbrana, A. Tephrostratigraphy study for the last 18,000 14C years in a deep-sea sediment sequence for the South Adriatic. Quaternary Science Review 23, (2004). 24852500.Google Scholar
Smith, V.C., Isaia, R., and Pearce, N.J.G. Tephrostratigraphy and glass composition of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quaternary Science Review 30, (2011). 36383660.Google Scholar
Sulpizio, R., Bonasia, R., Dellino, P., Di Vito, M.A., La Volpe, L., Mele, D., Zanchetta, G., and Sadori, L. Discriminating the-long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy). Journal of Volcanology and Geothermal Research 177, (2008). 263276.Google Scholar
Sulpizio, R., van Welden, A., Caron, B., and Zanchetta, G. The Holocene tephrostratigraphy of Lake Shkodra (Albania and Montenegro). Journal of Quaternary Science 25, 5 (2010). 633650.Google Scholar
Turney, C.S.M., Blockley, S.P.E., Lowe, J.J., Wulf, S., Branch, N.P., Mastrolorenzo, G., Swindle, G., Nathan, R., and Pollard, A.M. Geochemical characterization of Quaternary tephras from the Campanian province, Italy. Quaternary International 178, (2008). 288305.Google Scholar
Vogel, H., Zanchetta, G., Sulpizio, R., Wagner, B., and Nowaczyk, N. A tephrostratigraphic record for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Quaternary Science 25, 3 (2010). 320338.Google Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J.F.W. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122, (2004). 730.Google Scholar
Wulf, S., Kraml, M., and Keller, J. Towards a detailed distal tephrostratigraphy in the Central Mediterranean: the last 20,000 yrs record of Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research 177, (2008). 118132.Google Scholar
Zanchetta, G., Di Vito, M.A., Fallick, A.E., and Sulpizio, R. Stable isotopes of pedogenic carbonates from the Somma-Vesuvius area, southern Italy, over the past 18 kyr: paleoclimatic implications. Journal of Quaternary Science 15, (2000). 813824.Google Scholar
Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., Paterne, M., and Santacroce, R. Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. The Holocene 21, (2011). 3352.Google Scholar