Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T11:11:51.412Z Has data issue: false hasContentIssue false

Climatic controls of Holocene fire patterns in southern South America

Published online by Cambridge University Press:  20 January 2017

Cathy Whitlock*
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
Patricio I. Moreno
Affiliation:
Institute of Ecology and Biodiversity and Department of Ecological, Sciences, Universidad de Chile, Santiago, Chile
Patrick Bartlein
Affiliation:
Department of Geography, University of Oregon, Eugene, OR 97403, USA
*
*Corresponding author.E-mail address:[email protected] (C. Whitlock), [email protected] (P.I. Moreno), [email protected] (P. Bartlein)

Abstract

Holocene fire–climate–vegetation linkages are mostly understood at individual sites by comparing charcoal and pollen records with other paleoenvironmental proxy and model simulations. This scale of reconstruction often obscures detection of large-scale patterns in past fire activity that are related to changes in regional climate and vegetation. A network of 31 charcoal records from southern South America was examined to assess fire history along a transect from subtropic to subantarctic biomes. The charcoal data indicate that fire activity was greater than present at ca. 12,000 cal yr BP and increased further and was widespread at 9500 cal yr BP. Fire activity decreased and became more spatially variable by 6000 cal yr BP, and this trend continued to present. Atmospheric circulation anomalies during recent high-fire years show a southward shift in westerlies, and paleoclimate model simulations and data syntheses suggest that such conditions may have prevailed for millennia in the early Holocene when the pole-to-equator temperature gradients were weaker and annual temperatures were higher than present, in response to orbital-time-scale insolation changes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzúa, A.M., Villagran, C., Moreno, P.I.(2004). Deglacial and postglacial climate history in east-central Isla Grande de Chiloe, southern Chile (43°S).Quaternary Research, 63, 4959.CrossRefGoogle Scholar
Alley, R.B. (2000). The Younger Dryas cold interval as viewed from central Greenland.Quaternary Science Reviews, 19, 213226.CrossRefGoogle Scholar
Carcaillet, C., Almquist, H., Asnong, H., Bradshaw, R.H.W., Carrion, J.S., Gaillard, M.-J., Gajewski, K., Haas, J.N., Haberle, S.G., Hadom, P., Muller, S.D., Richard, P.J.H., Richoz, I., Rösch, M.(2002). Holocene biomass burning and global dynamics of the carbon cycle.Chemosphere, 49, 845863.CrossRefGoogle ScholarPubMed
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Mongreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K.(2005). Global consequences of land use.Science, 309, 570574.CrossRefGoogle ScholarPubMed
Gilli, A., Ariztegui, D., Anselmetti, F.S., McKenzie, J., Markgraf, V., Hajdas, I., McCulloch, R.D.(2005). Mid-Holocene strengthening of the southern westerlies in South America–sedimentological evidences from Lago Cardiel, Argentina (49°S).Global and Planetary Change, 49, 7593.Google Scholar
Haberle, S.G., Bennett, K.D.(2004). Postglacial formation and dynamics of North Patagonian rainforest in the Chonos Archipelago, southern Chile.Quaternary Science Reviews, 23, 24332452.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P.I., Ariztegui, D.(2003). Precise radiocarbon dating of late-glacial cooling in mid-latitude South America.Quaternary Research, 59, 7078.CrossRefGoogle Scholar
Heusser, C.J. (2003). Ice Age southern Andes: a chronicle of paleoecological events.Developments in Quaternary Science, 3, Elsevier [Amsterdam], 240 pGoogle Scholar
Huber, U.M., Markgraf, V., Schäbitz, F.(2004). Geographical and temporal trends in late quaternary fire histories of Fuego-Patagonia, South America.Quaternary Science Reviews, 23, 10791097.Google Scholar
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., Fiorino, M.(2001). The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation.Bulletin of the American Meteorological Society, 82, 247267.2.3.CO;2>CrossRefGoogle Scholar
Kitzberger, T. (2002). ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina.International Journal of Wildland Fire, 11, 3339.Google Scholar
Kitzberger, T., Veblen, T.T.(2003). Influences of climate on fire in northern Patagonia, Argentina.Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the western Americas Springer, New York.296321.CrossRefGoogle Scholar
Lamy, G., Rühlemann, F., Hebbeln, C., and Wefer, D. (2002). High- and low-latitude climate control on the position of the southern Peru-Chile current during the Holocene. Paleoceanography 17, 16-1–16-9.Google Scholar
Lara, A., Wolodarsky-Franke, A., Aravena, J.C., Cortés, M., Fraver, S., Silla, F.(2003). Fire regimes and forest dynamics in the lake region of south-central Chile.Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the western Americas Springer, New York.322342.Google Scholar
Liu, Z., Brady, E., Lynch-Stieglitz, J.(2003). Global ocean response to orbital forcing in the Holocene.Paleoceanography, 18, 10411060.Google Scholar
Markgraf, V. (1993). Climatic history of Central and South America since 18,000 years B.P.: Comparison of pollen records and model simulations.Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. Global Climates Since the Last Glacial Maximum University of Minnesota Press, Minneapolis.357385.Google Scholar
Markgraf, V., Bianchi, M.M.(1999). Paleoenvironmental changes during the last 17,000 years in western Patagonia: Mallin Aguado, Province of Neuquen, Argentina.Bamberger Geographische Schriften, 19, 175193.Google Scholar
Markgraf, V., Diaz, H.F.(2000). The past ENSO record: a synthesis.Diaz, H.F., Markgraf, V. El Niño and the Southern Oscillation; Multiscale Variability and Global and Regional Impacts Cambridge University Press, Cambridge.465488.Google Scholar
Markgraf, V., Dodson, J.R., Kershaw, P.A., McGlone, M., Nicholls, N.(1992). Evolution of the late Pleistocene and Holocene climates in circum South Pacific land areas.Climate Dynamics, 6, 193211.Google Scholar
Markgraf, V., Bradbury, J.P., Schwalb, A., Burns, S.J., Stern, C., Ariztegui, D., Gilli, A., Anselmetti, F.S., Stine, S., Maidana, N.(2003). Holocene paleoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel.Argentina. Holocene, 13, 581591.Google Scholar
Marlon, J.R., Bartlein, P.J., Whitlock, C.(2006). Fire–fuel–climate linkages in the northwestern U.S. during the Holocene.The Holocene, 16, 10591071.CrossRefGoogle Scholar
Masiokas, M.H., Aravena, J.C., Villalba, R., Luckman, B.H., Le Quesne, C.(2006). Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region.Journal of Climate, 19, 63346352.CrossRefGoogle Scholar
McEwan, C., Borrero, L.A., Prieto, A.(1997). Patagonia; Natural History, Prehistory, and Ethnography at the Uttermost End of the Earth. Princeton University Press, Princeton.Google Scholar
Moreno, P.I. (2000). Climate, fire, and vegetation between about 13,000 and 9200 14C yr B.P. in the Chilean Lake District.Quaternary Research, 54, 8189.CrossRefGoogle Scholar
Moreno, P.I. (2004). Millennial-scale climate variability in northwest Patagonia during the last 15,000 yr.Journal of Quaternary Science, 19, 3547.Google Scholar
Moreno, P.I., León, A.L.("n, 2003). Abrupt vegetation changes during the last Glacial–Holocene transition in mid-latitude South America.Journal of Quaternary Science, 18, 787800.CrossRefGoogle Scholar
Morgan, P., Defossé, G.E., Rodríguez, N.F.(2003). Management implications of fire and climate changes in the western Americas.Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the western Americas Springer, New York.331.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.J.(2002). Variability of El Nino/Southern Oscillation activity at millennial timescale during the Holocene epoch.Nature, 420, 162165.CrossRefGoogle ScholarPubMed
Overpeck, J.T., Whitlock, C., Huntley, B.(2002). Terrestrial biosphere dynamics in the climate system: past and future.Alverson, K.D., Bradley, R.S., Pedersen, T. Paleoclimate, Global Change, and the Future Springer, Berlin.81103.Google Scholar
Price, C., Rind, D.(1994). The impact of a 2xCO2 climate on lightning caused fires.Journal of Climate, 7, 14841494.Google Scholar
Pyne, S.J., Andrews, P.L., Laven, R.D.(1996). Introduction to Wildland Fire. John Wiley and Sons, New York.769 pp.Google Scholar
Renssen, H., Goosse, H., Fichefet, T., Masson-Delmotte, V., Koç, N.(2005). Holocene climate evolution in the high-latitude southern hemisphere simulated by a coupled atmosphere-sea ice-ocean-vegetation model.Holocene, 15, 951964.CrossRefGoogle Scholar
Rodó, X., Rodriguez-Arias, M.(" and Rodriguez-Arias, 2004). El Niño-Southern Oscillation: absent in the early Holocene?.Journal of Climate, 17, 423426.Google Scholar
Shinker, J.J., Bartlein, P.J., Shuman, B.(2006). Synoptic and dynamic climate controls of North American mid-continental aridity.Quaternary Science Reviews, 25, 14011417.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., Spurk, M.(1998). INTCAL89 radiocarbon age calibration, 24,000-0 cal BP.Radiocarbon, 40, 10411083.CrossRefGoogle Scholar
Veblen, T.T., Kitzberger, T., Raffaele, E., Lorenz, D.C.(2003). Fire history and vegetation changes in northern Patagonia, Argentina.Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the Western Americas Springer, New York.265295.CrossRefGoogle Scholar
Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J.(2000). Special Report on Land Use, Land-use Change, and Forestry. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Whitlock, C., Anderson, R.S.(2003). Fire history reconstructions based on sediment records from lakes and wetlands.Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the Western Americas Springer, New York.331.CrossRefGoogle Scholar
Whitlock, C., Bartlein, P.J.(2004). Holocene fire activity as a record of past environmental change.Gillespie, A., Porter, S.C. Developments in Quaternary Science, vol. 1, Elsevier, Amsterdam.479489.CrossRefGoogle Scholar
Whitlock, C., Bartlein, P.J., Markgraf, V., Ashworth, A.C.(2001). The mid-latitudes of North and South America during the Last Glacial Maximum and early Holocene: Similar paleoclimatic sequences despite differing large-scale controls.Markgraf, V. Interhemispheric Climate Linkages: Present and Past Interhemispheric Climate Linkages in the Americas and their Societal Effects Academic Press, New York.391416.Google Scholar
Whitlock, C., Bianchi, M.M., Bartlein, P.J., Markgraf, V., Marlon, J., Walsh, M., McCoy, N.(2006). Postglacial vegetation, climate, and fire history along the east side of the Andes (lat. 41–42.5 S): Argentina.Quaternary Research, 66, 187201.Google Scholar
Wolter, K., Timlin, M.S.(1998). Measuring the strength of ENSO—How does 1997/98 rank?.Weather, 53, 315324.Google Scholar