Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:13:05.544Z Has data issue: false hasContentIssue false

Climate dynamics during the penultimate glacial period recorded in a speleothem from Kanaan Cave, Lebanon (central Levant)

Published online by Cambridge University Press:  25 April 2018

Carole Nehme*
Affiliation:
Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
Sophie Verheyden
Affiliation:
Royal Belgian institute of natural sciences, directorate of earth and history of life, Brussels & associate researcher at Vrije Universiteit, Brussel, Belgium
Sebastian F.M. Breitenbach
Affiliation:
Sediment- & Isotope Geology, Ruhr-Universität, Bochum, Germany
David P. Gillikin
Affiliation:
Department of Geology, Union College, 807 Union St, Schenectady, NY 12308, USA
Anouk Verheyden
Affiliation:
Department of Geology, Union College, 807 Union St, Schenectady, NY 12308, USA
Hai Cheng
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis MN 55455, USA Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
R. Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis MN 55455, USA
John Hellstrom
Affiliation:
Geochemistry Laboratory, Earth Science Department, University of Melbourne, Melbourne, Australia
Stephen R. Noble
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, NG12 5GG, United Kingdom
Andrew R. Farrant
Affiliation:
British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom
Diana Sahy
Affiliation:
British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom
Thomas Goovaerts
Affiliation:
Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
Ghada Salem
Affiliation:
Association Libanaise d'Etudes speleologiques, Mansourieh El-Matn Lebanon
Philippe Claeys
Affiliation:
Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
*
*Corresponding author at: Laboratoire UMR IDEES 6266 CNRS, 7, Rue Thomas Becket 76280, Mont Saint-Aignan, France. E-mail address: [email protected] (C. Nehme).

Abstract

Little is known about terrestrial climate dynamics in the Levant during the penultimate interglacial-glacial period. To decipher the palaeoclimatic history of the Marine Oxygen Isotope Stage (MIS) 6 glacial period, a well-dated stalagmite (~194 to ~154 ka) from Kanaan Cave on the Mediterranean coast in Lebanon was analyzed for its petrography, growth history, and stable isotope geochemistry. A resolved climate record has been recovered from this precisely U–Th dated speleothem, spanning the late MIS 7 and early MIS 6 at low resolution and the mid–MIS 6 at higher resolution. The stalagmite grew discontinuously from ~194 to ~163 ka. More consistent growth and higher growth rates between ~163 and ~154 ka are most probably linked to increased water recharge and thus more humid conditions. More distinct layering in the upper part of the speleothem suggests strong seasonality from ~163 ka to ~154 ka. Short-term oxygen and carbon isotope excursions were found between ~155 and ~163 ka. The inferred Kanaan Cave humid intervals during the mid–MIS 6 follow variations of pollen records in the Mediterranean basins and correlate well with the synthetic Greenland record and East Asian summer monsoon interstadial periods, indicating short warm/wet periods similar to the Dansgaard-Oeschger events during MIS 4–3 in the eastern Mediterranean region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayalon, A., Bar-Matthews, M., Kaufman, A., 2002. Climatic conditions during marine isotopic stage 6 in the Eastern Mediterranean region as evident from the isotopic composition of speleothems: Soreq Cave, Israel. Geology 30, 303306.2.0.CO;2>CrossRefGoogle Scholar
Ayalon, A., Bar-Matthews, M., Frumkin, A., Matthews, A., 2013. Last Glacial warm events on Mount Hermon: the southern extension of the Alpine karst range in the east Mediterranean. Quaternary Science Reviews 59, 4356.CrossRefGoogle Scholar
Baker, A., Genty, D., Dreybrodt, W., Barnes, W.L., Mockler, N.J., Grapes, J., 1998. Testing theoretically predicted stalagmite growth rate with Recent annually laminated samples implication for past stalagmite deposition. Geochimica et Cosmochimica Acta 62, 393404.CrossRefGoogle Scholar
Baker, A., Smart, P.L., 1995. Recent flowstone growth rates: field measurements in comparison to theoretical predictions. Chemical Geology 122, 121128.Google Scholar
Baldini, J.U.L., McDermott, F., Fairchild, I.J., 2006. Spatial variability in cave dripwater hydrochemistry: implications for stalagmite paleoclimate records. Chemical Geology 235, 390404.Google Scholar
Bard, E., Antonioli, F., Silenzi, S., 2002. Sea-level during the penultimate interglacial period based on a submerged stalagmite from Argentarola Cave (Italy). Earth and Planetary Science Letters 196, 135146.CrossRefGoogle Scholar
Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I. R., Broecker, W.S., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097.CrossRefGoogle ScholarPubMed
Barker, S., Knorr, G., Edwards, R.L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., Ziegler, M., 2011. 800,000 years of abrupt climate variability. Science 334, 347351.CrossRefGoogle Scholar
Bar-Matthews, M., 2014. History of water in the Middle East and North Africa. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. 2nd ed. Elsevier, Oxford, pp. 109128.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, M., Hawkesworth, C., 2003. Sea-land isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implications for paleorainfall during interglacial interval. Geochimica Cosmochimica Acta 67, 31813199.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters 166, 8595.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., Halicz, L., 1996. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica Acta 60, 337347.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Blunier, T., Brook, E.J., 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.CrossRefGoogle ScholarPubMed
Borsato, A., Quinif, Y., Bini, A., Dublyansky, Y., 2005. Open-system alpine speleothems: implications for U-series dating and paleoclimate reconstructions. Studi Trentini Di Scienze Naturali, Acta. Geologica 80, 7183.Google Scholar
Breitenbach, S.F.M., Lechleitner, F.A., Meyer, H., Diengdoh, G., Mattey, D., Marwan, N., 2015. Cave ventilation and rainfall signals in dripwater in a monsoonal setting – a monitoring study from NE India. Chemical Geology 402, 111124.Google Scholar
Breitenbach, S.F.M., Rehfeld, K., Goswami, B., Baldini, J.U.L., Ridley, H.E., Kennett, D.J., Prufer, K.M., et al., 2012. Constructing proxy records from age models (COPRA). Climate of the Past 8, 17651779.CrossRefGoogle Scholar
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S.J., et al., 2010. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Climate of the Past 6, 345365.CrossRefGoogle Scholar
Cheddadi, R., Rossignol-Strick, M., 1995. Eastern Mediterranean Quaternary paleoclimates from pollen and isotope records of marine cores in the Nile cone area. Paleoceanography 10, 291300.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., Zhang, H., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., et al., 2013. Improvements in 230 Th dating, 230 Th and 234 U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371, 8291.CrossRefGoogle Scholar
Cheng, H., Sinhac, A., Verheyden, S., et al.., 2015. The climate variability in northern Levant over the past 20,000 years. Geophysical Research Letters 42, 86418650.CrossRefGoogle Scholar
Cheng, H., Zhang, P.Z., Spötl, C., Edwards, R.L., Cai, Y.J., Zhang, D.Z., Sang, W.C., Tan, M., An, Z.S., 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, L01705.CrossRefGoogle Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
de Abreu, L., Shackleton, N., Schönfeld, J., Hall, M., Chapman, M., 2003. Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology 196, 120.Google Scholar
Dreybrodt, W., 1988. Processes in Karst Systems. Springer, New York.Google Scholar
Dreybrodt, W., 1999. Chemical kinetics, speleothem growth and climate. Boreas 28, 347356.Google Scholar
Dubertret, L., 1975. Introduction à la carte géologique au 1/50000 du Liban. Notes et Mémoires sur le Moyen-Orient 23, 345403.Google Scholar
Edwards, R.L., Chen, J.H., Ku, T.L., Wasserburg, G.J., 1987. Precise timing of the last interglacial period from mass spectrometric determination of 230Th in corals. Science 236, 15471553.CrossRefGoogle ScholarPubMed
Ehlers, J., Gibbard, P.L., 2007. The extent and chronology of Cenozoic global glaciation. Quaternary International 164, 620.CrossRefGoogle Scholar
Ehlers, J., Grube, A., Stephan, H.-J., Wansa, S., 2011. Pleistocene glaciations of North Germany—new results. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences 15. Elsevier, Amsterdam, pp. 149162.Google Scholar
Emeis, K.C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M.W., Kroon, D., et al., 2003. Eastern Mediterranean surface water temperatures and 18O during deposition of sapropels in the late Quaternary. Paleoceanography 18, 10051029.Google Scholar
Fairchild, I.J., Baker, A., 2012. Speleothem Science: From Processes to Past Environments. Quaternary Geosciences Series. Wiley-Blackwell, Chichester, UK.Google Scholar
Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F., Tooth, A.F., 2001. Annual to sub-annual resolution of multiple trace-element trends in speleothems. Journal of the Geological Society 158, 831841.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., 2006. Modification and preservation of environmental signals in speleothems. Earth Science Reviews 75, 105153.Google Scholar
Fletcher, W.J., Goni, M.F.S., Allen, J.R., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Müller, U.C., 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 28392864.CrossRefGoogle Scholar
Fletcher, W.J., Sánchez Goñi, M.F., 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451464.CrossRefGoogle Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R.L., Mudelsee, M., Göktürk, O.M., Fankhauser, A., et al., 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36, L19707.CrossRefGoogle Scholar
Frisia, S., 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for paleoclimate studies. International Journal of Speleology 44, 116.Google Scholar
Frumkin, A., Ford, D. C., Schwarcz, H., 2000. Paleoclimate and vegetation of the Last Glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14, 863870.Google Scholar
Gasse, F., Vidal, L., Van Campo, E., Demory, F., Develle, A.-L., Tachikawa, K., Elias, A., et al., 2015. Hydroclimatic changes in northern Levant over the past 400 000 years. Quaternary Science Reviews 111, 18.CrossRefGoogle Scholar
Genty, D., Baker, A., Vokal, B., 2001. Intra- and inter-annual growth rate of modern stalagmites. Chemical Geology 176, 191212.Google Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., et al., 2006. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles—comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25, 21182142.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., 2003. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Genty, D., Deflandre, G., 1998. Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints. Journal of Hydrology 211, 208232.Google Scholar
Goñi, M.F.S., Turon, J.L., Eynaud, F., Gendreau, S., 2000. European climatic response to millennial-scale changes in the atmosphere–ocean system during the Last Glacial period. Quaternary Research 54, 394403.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 744747.Google Scholar
Heiss, J., Condon, D.J., McLean, N., Noble, S.R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 16101614.Google Scholar
Hellstrom, J., 2003. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 18, 13461351.Google Scholar
Hellstrom, J., 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, 289295.Google Scholar
Hendy, C.H., 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., Röhl, U., 2008. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the Middle Pleistocene transition (~640 ka)? Paleoceanography 23, PA4218.Google Scholar
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P.C., Margari, V., Maclaghlan, S., Rothwell, G., 2013. Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 kyr. Paleoceanography 28, 115.CrossRefGoogle Scholar
Hoffmann, D.L., Spötl, C., Mangini, A., 2009. Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U-Th dating of carbonates. Chemical Geology 259, 253261.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.CrossRefGoogle ScholarPubMed
Koltai, G., Spötl, C., Shen, C.-C., Wu, C.-C., Rao, Z., Palcsu, L., Kele, S., Surányi, G., Bárány-Kevei, I., 2017. A penultimate glacial climate record from southern Hungary. Journal of Quaternary Science 32, 946956.Google Scholar
Lachniet, M.S., Bernal, J.P., Asmerom, Y., Polyak, V., 2012. Uranium loss and aragonite–calcite age discordance in a calcitized aragonite stalagmite. Quaternary Geochronology 14, 2637.Google Scholar
Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., Tzedakis, P.C., 2014. A 600,000 year long continental pollen record from Lake Van, eastern Anatoloia (Turkey). Quaternary Science Reviews 104, 3041.Google Scholar
Margari, V., Skinner, L.C., Hodell, D.A., Martrat, B., Toucanne, S., Grimalt, J.O., Gibbard, P.L., Lunkka, J.P., Tzedakis, P.C., 2014. Land-ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology 42, 183186.Google Scholar
Margari, V., Skinner, L.C., Tzedakis, P.C., Ganopolski, A., Vautravers, M., Shackleton, N.J., 2010. The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience 3, 127131.Google Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Chaco, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Jason, H.C., Hodell, D.A., 2004. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306, 17621765.Google Scholar
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., Stocker, T.F., 2007. Four climatic cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317, 502507.CrossRefGoogle ScholarPubMed
Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S., 2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters 269, 8095.Google Scholar
Muñoz-García, M.B., Cruz, J., Martín-Chivelet, J., Ortega, A.I., Turrero, M.J., López-Elorza, M., 2016. Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change. Quaternary International 407(Part A), 7485.CrossRefGoogle Scholar
Nehme, C., Verheyden, S., Noble, S.R., Farrant, A.R., Sahy, D., Hellstrom, J., Delannoy, J.J., Claeys, P., 2015. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon. Climate of the Past 11, 17851799.Google Scholar
Nehme, C., Voisin, C., Mariscal, A., Gérard, P.-C., Cornou, C., Jabbour-Gédéon, B., Ahmaz, S., et al., 2013. The use of passive seismological imaging in speleogenetic studies: an example from Kanaan Cave, Lebanon. International Journal of Speleology 42, 97108.Google Scholar
North Greenland Ice Core Project members. 2004. High-resolution climate record of Northern Hemisphere climate extending into the Last Interglacial period. Nature 431, 147151.CrossRefGoogle Scholar
Ortega, R., Maire, R., Devès, G., Quinif, Y., 2005. High resolution mapping of uranium and other trace elements in recrystallized aragonite–calcite speleothems from caves in the Pyrenees (France): implication for U-series dating. Earth and Planetary Science Letters 237, 911923.Google Scholar
Past Interglacials Working Group of PAGES. 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162219.Google Scholar
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.CrossRefGoogle Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Röhl, U., 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 19471951.Google Scholar
Proctor, C.J., Baker, A., Barnes, W.L., Gilmour, M.A., 2000. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamics 16, 815820.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Regattieri, E., Zanchetta, G., Drysdale, R.N., Isola, I., Hellstrom, J.C., Roncioni, A., 2014. A continuous stable isotope record from the penultimate glacial maximum to the Last Interglacial (159–121 ka) from Tana Che Urla Cave (Apuan Alps, central Italy). Quaternary Research 82, 450461.Google Scholar
Richards, D.A., Dorale, J.A., 2003. Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry 52, 407460.CrossRefGoogle Scholar
Ridley, H.E., Asmerom, Y., Baldini, J.U., Breitenbach, S.F., Aquino, V.V., Prufer, K.M., Culleton, B.J., et al., 2015. Aerosol forcing of the position of the intertropical convergence zone since AD 1550. Nature Geoscience 8, 195200.CrossRefGoogle Scholar
Rohling, E., Mayewski, P., Challenor, P., 2003. On the timing and mechanism of millennial-scale climate variability during the last glacial cycle. Climate Dynamics 20, 257267.CrossRefGoogle Scholar
Rossignol-Strick, M., 1995. Sea-land correlation of pollen records in the eastern Mediterranean for the glacial-interglacial transition: biostratigraphy versus radiometric time-scale. Quaternary Science Reviews 14, 893915.Google Scholar
Rossignol-Strick, M., Paterne, M., 1999. A synthetic pollen record of the eastern Mediterranean sapropels of the last 1 Ma: implications for the time-scale and formation of sapropels. Marine Geology 153, 221237.Google Scholar
Roucoux, K.H., Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., 2008. Vegetation history of the marine isotope stage 7 interglacial complex at Ioannina, NW Greece. Quaternary Science Reviews 27, 13781395.Google Scholar
Roucoux, K.H., Tzedakis, P.C., Lawson, I.T., Margari, V., 2011. Vegetation history of the penultimate glacial period (marine isotope stage 6) at Ioannina, north-west Greece. Journal of Quaternary Science 26, 616626.CrossRefGoogle Scholar
Roy-Barman, M., Pons-Branchu, E., 2016. Improved U–Th dating of carbonates with high initial 230Th using stratigraphical and coevality constraints. Quaternary Geochronology 32, 2939.Google Scholar
Schmiedl, G., Mitschele, A., Beck, S., Emeis, K.C., Hemleben, C., Schulz, H., Sperling, M., Weldeab, S., 2003. Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S5 and S6 deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 139164.Google Scholar
Schwarcz, H.P., 1989. Uranium series dating of Quaternary deposits. Quaternary International 1, 717.Google Scholar
Scrivner, A. E., Vance, D., Rohling, E. J., 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geology 32, 565568.Google Scholar
Shen, C.C., Lin, K., Duan, W., Jiang, X., Partin, J.W., Edwards, R.L., Cheng, H., Tan, M., 2013. Testing the annual nature of speleothem banding. Scientific Reports 3, 2633.Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., Smeed, D.A., 2003. Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.Google Scholar
Smith, A.C., Wynn, P.M., Barker, P.A., Leng, M.J., Noble, S.R., Wlodek, T., 2016. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Scientific Reports 6, 24745.CrossRefGoogle ScholarPubMed
Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H.-U., Sumita, M., Kipfer, R., Cukur, D., Kwiecien, O., Anselmetti, F.S., 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology 61, 18301861.Google Scholar
Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087.Google Scholar
Treble, P.C., Chappell, J., Shelley, J.M.G., 2005. Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochimica et Cosmochimica Acta 69, 48554863.Google Scholar
Tzedakis, P.C., Pälike, H., Roucoux, K.H., de Abreu, L., 2009. Atmospheric methane, southern European vegetation and low-mid latitude links on orbital and millennial timescales. Earth and Planetary Science Letters 277, 307317.Google Scholar
Tzedakis, P.C., Roucoux, K.H., de Abreu, L., Shackleton, N.J., 2004. The duration of forest stages in southern Europe and interglacial climate variability. Science 306, 22312235.Google Scholar
Ünal-İmer, E., Shulmeister, J., Zhao, J.X., Uysal, I.T., Feng, Y.X., Nguyen, A.D., Yüce, G., 2015. An 80 kyr-long continuous speleothem record from Dim Cave, SW Turkey with paleoclimatic implications for the Eastern Mediterranean. Scientific Reports 5, 13560.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L., Almogi-Labin, A., Schilman, B., 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planetary Science Letters 249, 384399.Google Scholar
Van Geldern, R., Barth Johannes, A.C., 2012. Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnology Oceanography. Methods 10, 10241036.Google Scholar
Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Keppens, E., Claeys, P., 2014. Seasonal variations recorded in cave monitoring results and a 10 year monthly resolved speleothem δ18O and δ13C record from the Han-sur-Lesse cave, Belgium. Climate of the Past 10, 18211856.Google Scholar
Verheyden, S., Baele, J.M., Keppens, E., Genty, D., Cattani, O., Cheng, H., Lawrence, E., Zhang, H., Van Strijdonck, M., Quinif, Y., 2006. The Proserpine stalagmite (Han-Sur-Lesse Cave, Belgium): preliminary environmental interpretation of the last 1000 years as recorded in a layered speleothem. Geologica Belgica 9, 245256.Google Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., Swennen, R., 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quaternary Research 70, 368381.CrossRefGoogle Scholar
Wainer, K., Genty, D., Blamart, D., Bar-Matthews, M., Quinif, Y., Plagnes, V., 2013. Millennial climatic instability during penultimate glacial period recorded on a south-western France speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 122131.Google Scholar
Wainer, K., Genty, D., Daeron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons- Branchu, E., et al., 2011. Speleothem record of the last 180 ka in Villars cave (SW France): investigation of a large δ18O shift between MIS6 and MIS5. Quaternary Science Reviews 30, 130146.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Shao, X., Chen, S., Wu, J.Y., Jiang, X.Y., Wang, X.F., An, Z.S., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29, 28282838.CrossRefGoogle Scholar
The World Bank. 2003. Republic of Lebanon: Policy Note on Irrigation Sector Sustainability. Report No. 28766-LE. The World Bank, Water, Environment, Social, and Rural Development Group, Middle East and North Africa Region, Agriculture and Rural Development Department, Washington, DC.Google Scholar
Zhornyak, L.V., Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Isola, I., Regattieri, E., Piccini, L., Baneschi, I., Couchoud, I., 2011. Stratigraphic evidence for a “pluvial phase” between ca 8200–7100 ka from Renella cave (central Italy). Quaternary Science Reviews 30, 409417.Google Scholar
Ziegler, M., Tuenter, E., Lourens, L.J., 2010. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews 29, 14811490.Google Scholar