Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:54:39.821Z Has data issue: false hasContentIssue false

Climate change and population history in the pacific lowlands of Southern Mesoamerica

Published online by Cambridge University Press:  20 January 2017

Hector Neff*
Affiliation:
Department of Anthropology and Institute for Integrated Research in Materials, Environments, and Societies, California State University-Long Beach Long Beach, CA 90840-1003, USA
Deborah M. Pearsall
Affiliation:
Department of Anthropology, 107 Swallow Hall, University of Missouri, Columbia, MO 65211-1440, USA
John G. Jones
Affiliation:
Department of Anthropology, PO Box 644910, College 150, Washington State University, Pullman, WA 99164-4910, USA
Bárbara Arroyo de Pieters
Affiliation:
Centro de Investigaciones Arqueológicas y Antropológicas, Universidad del Valle, 18 Avenida 11-95, Zona 15, Vista Hermosa III, Guatemala, Guatemala
Dorothy E. Freidel
Affiliation:
Department of Geography, Sonoma State University, 1801 East Cotati Ave., Rohnert Park, CA 94928, USA
*
*Corresponding author. E-mail address:[email protected] (H. Neff).

Abstract

Core MAN015 from Pacific coastal Guatemala contains sediments accumulated in a mangrove setting over the past 6500 yr. Chemical, pollen, and phytolith data, which indicate conditions of estuarine deposition and terrigenous inputs from adjacent dry land, document Holocene climate variability that parallels the Maya lowlands and other New World tropical locations. Human population history in this region may be driven partly by climate variation: sedentary human populations spread rapidly through the estuarine zone of the lower coast during a dry and variable 4th millennium B.P. Population growth and cultural florescence during a long, relatively moist period (2800–1200 B.P.) ended around 1200 B.P., a drying event that coincided with the Classic Maya collapse.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arroyo, B. (1994). The Early Formative in Southern Mesoamerica: an explanation for the origins of Sedentary Villages. PhD thesis, Vanderbilt University.Google Scholar
Arroyo, B., (1995). Early ceramics from El Salvador. Barnett, W.K., Hoopes, J.W., The Emergence of Pottery: Technology and Innovation in Ancient Societies. Smithsonian Institution Press, Washington, D.C.. 199208.Google Scholar
Arroyo, B., Neff, H., (1996). The Early Formative in coastal Suchitepequez and Escuintla, Guatemala.Presented at the 61st Annual Meeting of the Society for American Archaeology, New Orleans.1014.Google Scholar
Arroyo, B., Neff, H., (2001). Early occupation and the environment on the Pacific Coast of Guatemala. Presented at the 66th Annual Meeting of the Society for American Archaeology, New Orleans 1722.Google Scholar
Arroyo, B., Neff, H., Pearsall, D., Jones, J.G., Freidel, D.E., (2001). Ultimos resultados del proyecto de medioambiente antiguo el la Costa del Pacifico. XV Simposio de Investigaciones Arqueológicas en Guatemala. Guatemala City, July 16–20.Google Scholar
Blake, M., Clark, J.E., Voorhies, B., Michaels, G.H., Love, M.W., Pye, M.E., Demarest, A.A., Arroyo, B., (1995). A new radiocarbon chronology of rht Archaic and Formative Periods along the Pacific coast of southeastern Mesoamerica. Ancient Mesoamerica 6, 161184.CrossRefGoogle Scholar
Borhegyi, S.F., (1965). Settlement patterns of the Guatemalan highlands. Willey, G.R. Handbook of Middle American Indians, vol. 2: Archaeology of Southern Mesoamerica, Part One University of Texas Press, Austin. 5975.CrossRefGoogle Scholar
Bove, F.J., (1989). Settlement classification procedures in Formative Escuintla, Guatemala. Bove, F.J., Heller, L. New Frontiers in the Archaeology of the Pacific Coast of Southern Mesoamerica. Arizona State University, Anthropological Research Papers, No. 39, Tempe, AZ 65101.Google Scholar
Bove, F.J., Medrano, S., (2003). Teotihuacan, militarism, and Pacific Guatemala. Braswell, G.E. The Maya and Teotihuacan: Reinterpreting Early Classic Interaction University of Texas Press, Austin. 4579.Google Scholar
Brenner, M., Rosenmeier, M.F., Hodell, D.A., Curtis, J.H., (2002). Paleolimnology of the Maya lowlands: long-term perspectives on interactions among climate, environment, and humans. Ancient Mesoamerica 13, 141157.CrossRefGoogle Scholar
Carmean, K., Dunning, N., Kowalski, J.K., (2004). High times in the hill country: a perspective from the Terminal Classic Puuc region. Demarest, A.A., Rice, P.M., Rice, D.S. The Terminal Classic in the Maya Lowlands: Collapse, Transition, and Transformation University Press of Colorado, Boulder. 424449.Google Scholar
Coe, M.D., (1999). The Maya.6th ed. Thames and Hudson, New York.Google Scholar
Demarest, A.A., Rice, P.M., Rice, D.S., (2004). The Terminal Classic in the Maya lowlands: assessing collapses, terminations, and transformations. Demarest, A.A., Rice, P.M., Rice, D.S. The Terminal Classic in the Maya Lowlands: Collapse, Transition, and Transformation University Press of Colorado, Boulder. 545572.Google Scholar
Gill, R.B., (2000). The Great Maya Droughts: Water, Life, and Death. University of New Mexico Press, Albuquerque.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Haug, G.H., Gunther, D., Peterson, L.C., Sigman, D.M., Hughen, K.A., Aeschlimann, B., (2003). Climate and the collapse of Maya civilization. Science 299, 17311735.CrossRefGoogle ScholarPubMed
Hodell, D.A., Curtis, J.H., Brenner, M., (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391394.CrossRefGoogle Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T.P., (2001). Solar forcing of drought frequency in the Maya lowlands. Science 292, 13671370.CrossRefGoogle ScholarPubMed
Hodell, D.A., Brenner, M., Curtis, J.H., (2005). Terminal Classic droughts in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quaternary Science Reviews 24, 14131427.CrossRefGoogle Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., Trumbore, S., (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 5154.CrossRefGoogle Scholar
Jones, J.G., Pearsall, D.M., Collins, S., Vientimilla, C., (2001). Pollen and phytolith evidence for settlement and subsistence in Pacific coastal Guatemala.Paper presented at the 66th Annual Meeting of the Society for American Archaeology, New Orleans.Google Scholar
Lachniet, M.S., Asmerom, Y., Burns, S.J., Patterson, W.P., Polyak, V.J., Seltzer, G.O., (2004). Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology 32, 957960.CrossRefGoogle Scholar
Love, M.W., (1989). Early Settlements and Chronology of the Rio Naranjo, Guatemala. PhD thesis, University of California, Berkeley.Google Scholar
Love, M.W., (1999). Ideology, material culture, and daily practice in Pre-Classic Mesoamerica: a Pacific coast perspective. Grove, D.C., Joyce, R.A. Social Patterns in Pre-Classic Mesoamerica Dumbarton Oaks, Washington, D.C.. 127153.Google Scholar
Martin, L., Bertaux, J., Correge, T., Ledru, M.-P., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., Turcq, B., (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P.. Quaternary Research 47, 117122.CrossRefGoogle Scholar
Mayewski, P.A., Eelco, E.R., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., (2004). Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
Mosiño Alemán, P.A., García, E., ("o Alemán and García, 1974). The climate of Mexico. Bryson, R.A., Hare, F.K. Climates of North America World Survey of Climatology vol. 11, Elsevier, New York. 345404.Google Scholar
Neff, H., (1994). RQ-mode principal components analysis of ceramic compositional data. Archaeometry 36, 115130.Google Scholar
Neff, H., Freidel, D.E., Jones, J.G., (2001). Humans on the changing Holocene landscape of the Guatemalan Pacific coast.Presented at the 66th Annual Meeting of the Society for American Archaeology, April 17–22, New Orleans.Google Scholar
Neff, H., Arroyo, B., Jones, J.G., Pearsall, D.M., Freidel, D.E., (2002). Nueva evidencia pertinente a la ocupación temprana del sur de Mesoamérica.Paper presented at the XII Encuentro Internacional: Los Investigadores de la Cultura Maya, Campeche, November 10–14.Google Scholar
Neff, H., Bove, F.J., Genovez, J.V., (2005). Clima y la naturaleza de la ocupación Posclásica de la Costa Sur de Guatmala.. XIX Simposio de Investigactiones Arqueológicas en Guatemala, Ciudad de Guatemala, 20 de Julio 2005.Google Scholar
Neff, H., Pearsall, D., Jones, J.G., Arroyo, B., Collins, S., Freidel, D.E., in press. Early Maya Adaptive Patterns: Mid-Late Holocene Paleoenvironmental Evidence from Pacific Guatemala.. Latin American Antiquity.Google Scholar
Neiman, F.D., (1997). Conspicuous Consumption as wasteful advertising: a Darwinian perspective on spatial patterns in Classic Maya terminal monument dates. Barton, C.M., Clark, G. Rediscovering Darwin: Evolutionary Theory and Archeological Explanation Archeological Papers of the American Anthropological Association vol. 7, 267290.Google Scholar
Overpeck, J., Webb, R., (2000). Nonglacial rapid climate events: past and future. Proceedings of the National Academy of Sciences of the United States of America 97, 13351338.CrossRefGoogle ScholarPubMed
Pearsall, D.M., Jones, J.G., (2001). Prehistoric forest modification in the northern Neotropics.Paper presented at the 66th Annual Meeting of the Society for American Archaeology, New Orleans.Google Scholar
Peterson, L.C., Haug, G.H., (2005). Climate and the collapse of Maya civilization: a series of multi-year droughts helped to doom an ancient culture. American Scientist 93, 322329.CrossRefGoogle Scholar
Rice, P., Rice, D., (2004). Late Classic to Postclassic transformations in the Petén Lakes region, Guatemala. Demarest, A.A., Rice, P.M., Rice, D.S. The Terminal Classic in the Maya Lowlands: Collapse, Transition, and Transformation University Press of Colorado, Boulder. 125139.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An ∼15,000-year record of El Niño-driven alleviation in southwestern Ecuador. Science 283, 516520.CrossRefGoogle Scholar
Rosenmeier, M.F., Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T.P., (2002). A 3,500 year record of environmental change from the southern Maya lowlands, Peten, Guatemala. Quaternary Research 57, 183190.CrossRefGoogle Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., and Maasch, K.A. (1996). Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño Science. 273, 15311533.Google Scholar
Shook, E.M., (1965). Archaeological survey of the Pacific coast of Guatemala. Willey, G.R. Handbook of Middle American Indians, Vol. 2: Archaeology of Southern Mesoamerica, Part One University of Texas Press, Austin. 180194.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C Age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Twiss, P.C., (1992). Predicted world distribution of C3 and C4 grass phytoliths. Rapp, B.C., Mulholland, S.C. Phytolith Systematics: Emerging Issues. Edited by George Plenum Press, New York. 113128.CrossRefGoogle Scholar
Vivó Escoto, J.A., (" Escoto, 1965). Weather and climate of Mexico and Central America. West, R.C. Handbook of Middle American Indians Volume 1: Natural Environments and Early Cultures University of Texas Press, Austin. 187215.Google Scholar
Voorhies, B., (2004). Coastal Collectors in the Holocene: The Chantuto People of Southwest Mexico. University Press of Florida, Gainesville.Google Scholar
Voorhies, B., Gasco, J., (2004). Postclassic Soconusco Society: the late prehistory of the coast of Chiapas, Mexico. Monograph vol.14, Institute for Mesoamerican Studies, Albany.Google Scholar
Voorhies, B., Kennett, D.J., Jones, J.G., Wake, T.A., (2002). A middle Archaic archaeological site on the west coast of Mexico. Latin American Antiquity 13, 179200.CrossRefGoogle Scholar
Webster, D.L., (2002). The Fall of the Ancient Maya: Solving the Mystery of the Maya Collapse. Thames and Hudson, New York.Google Scholar
Woodroffe, C.D., (1990). The impact of sea-level rise on mangrove shorelines. Progress in Physical Geography 14, 483520.CrossRefGoogle Scholar
Woodroffe, C.D., Grindrod, J., (1991). Mangrove biogeography: the role of Quaternary environmental and sea-level change. Journal of Biogeography 18, 479492.CrossRefGoogle Scholar
Zabel, M., Schneider, R.R., Wagner, T., Adegbie, A.T., de Vries, U., Kolonic, S., (2001). Late Quaternary climate changes in central Africa as inferred from terigenous input to the Niger Fan. Quaternary Research 56, 207217.CrossRefGoogle Scholar