Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T14:14:58.829Z Has data issue: false hasContentIssue false

Climate and ocean variability during the middle and late Holocene recorded in laminated sediments from Alfonso Basin, Gulf of California, Mexico

Published online by Cambridge University Press:  20 January 2017

Ligia Pérez-Cruz*
Affiliation:
Laboratorio de Paleomagnetismo y Paleoambientes, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan 04510 D.F., México

Abstract

A laminated sequence (core BAP96-CP 24°38.12′N, 110°33.24′W; 390 m depth) from the Alfonso Basin in Bay of La Paz, southern Gulf of California, contains a record of paleoceanographic and paleoclimatic changes of the past 7900 yr. Radiolarian assemblages and magnetic susceptibility are used as proxies of oceanographic and climatic variability. The records provide a regional scenario of the middle and late Holocene, suggesting two major climatic regimes and several millennial-scale events. Conditions relatively warmer and drier than today occurred from ∼7700 to 2500 cal yr BP, promoting the intensification of evaporation processes and the prevalence of the Gulf of California water in the Basin. These conditions correlate with strong droughts in the middle Holocene of North America and with minimal incursion of tropical waters into the Gulf of California. Proxies indicate a warm scenario and the dominance of the Equatorial Surface Water in the Alfonso Basin from ∼2400 to 700 cal yr BP, suggesting the intensification of ENSO cycles. A climatic signal between ∼1038 and 963 cal yr BP may be correlated with global signal of the “Medieval Warm Period.” Several cooling events are recognized at 5730, 3360, 2700, 1280 and 820 cal yr BP and are associated with intensification of northwest winds leading to upwellings and enhanced productivity in the Basin.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O.R., Bryan, M., Bennett, P., (1990). Experimental and observational studies of radiolarian physiological ecology: factors determining the distribution and survival of Didymocyrtis tetrathalamus tetrathalamus with implications for paleoecological interpretations. Marine Micropaleontology 16, 155167.CrossRefGoogle Scholar
Barron, J.A., Bukry, D., Bischoff, J.L., (2003). A 2000-yr-long record of climate from the Gulf of California.. In: West, G.J., Blomquist, N.L. (Eds.), Proceedings of the Nineteenth Pacific Climate Workshop, Asilomar, Pacific Grove, CA, March 3–6, 2002. Technical Report 71, Interagency Ecological Program for the San Francisco Estuary, Sacramento CA, 11–21 http://meteora.ucsd.edu/paclim/proceedings02.html.Google Scholar
Barron, J.A., Bukry, D., Bischoff, J.L., (2004). High resolution paleoceanography of the Guaymas Basin, Gulf of California, during the past 15,000 years. Marine Micropaleontology 50, 185207.Google Scholar
Baumgartner, T.R., Ferreira-Bartrina, V., Moreno-Hentz, , (1991). Varve formation in the central Gulf of California: a reconsideration of the origin of the dark laminae from the 20th century varve record. Dauphin, J., Simoneit, B. The Gulf of California and Peninsular Province of the Californias Memoir vol. 47, American Association of Petroleum Geologist, 617635.Google Scholar
Benson, R.N., (1966). Recent Radiolaria from the Gulf of California.. PhD thesis, University of Minessota., p. 577.Google Scholar
Boltovskoy, D., Jankilevich, S.S., (1985). Radiolarian distribution in East Equatorial Pacific plankton. Oceanologica Acta 8, 1 101123.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., de Menocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571265.Google Scholar
Clement, A.C., Seager, R., Cane, M.A., (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, 731737.Google Scholar
Cole, J.E., Overpeck, J.T., Cook, E.R., (2002). Multiyear La Niña events and persistent drought in the contiguous United States. Geophysical Research Letters 29, 25-125-4.Google Scholar
DeMenocal, J., Ortiz, T., Guilderson, M., Sarnthein, , (2000). Coherent high- and low-latitude climate Variability during the Holocene warm period. Science 288, 21982202.Google Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations–Their patterns and possible cause. Quaternary Research 3, 155205.Google Scholar
Douglas, M.W., Maddox, R.A., Howard, K., Reyes, S., (1993). The Mexican monsoon. Journal of Climate 6, 16651677.Google Scholar
Douglas, R.G., Gorsline, D., Grippo, A., Granado, I., González-Yajimovich, O., (2002). Holocene Ocean–climate variations in Alfonso Basin, Gulf of California, Mexico. Proceeds, 18th PACLIM Workshop 720.Google Scholar
Gorsline, D.S., De Diego, T., Nava-Sánchez, E.H., (2000). Seismically triggered turbidities in small margin Basins: Alfonso Basin, Western of Gulf of California and Santa Monica Basin, California Borderland. Sedimentary Geology 135, 2135.Google Scholar
Grove, J.M., Switsur, V.R., (1994). Glacial geological evidence for the Medieval Warm Period. Climatic Change 26, 143169.Google Scholar
Haeckel, E., (1887). Report of the Radiolaria collected by “H.M.S. Challenger” during the years 1873–1876. Report Scientific Results, Boyage H.M.S. Challenger. Zoology 18, 1188.Google Scholar
Hausback, B., (1984). Cenozoic volcanic and tectonic evolution of Baja California Sur, México. Friezzel, V. Geology in Baja California Peninsula. Pacific Section SEPM vol. 39, 219236.Google Scholar
Kemp, A.E.S., (2003). Evidence for abrupt climate changes in annually laminated marine sediments. Philosophical Transactions of the Royal Society of London A 361, 1810 18511870.Google Scholar
Klovan, J.E., Miesch, A.T., (1976). Extended CABFAC and Q-mode computer programs for Q mode factor analysis of compositional data. Computers in Geosciences 1, 161178.CrossRefGoogle Scholar
Lavín, M.F., Beire, E., Badan, A., (1997). Estructura hidrográfica y circulación del Golfo de California: escalas estacional e interanual. Lavín, M.F. Contribuciones a la Oceanografía Física de México: Monografía No. 3. Unión Geofísica Mexicana, Ensenada B.C., Mexico 141177.Google Scholar
Liu, Z., Kutzbach, J., Wu, L., (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, 22652268.CrossRefGoogle Scholar
Maher, B.A., Thompson, R., (1999). Quaternary Climates, Environments and Magnetism. Cambridge Univ. Press, 390.Google Scholar
Mayewski, P.A., Rohlingb, E.E., Stagerc, J.C., Karlén, W., Maascha, K.A., Meekere, L.D., Meyersona, E.A., Gassef, F., van Kreveldg, S., Holmgrend, K., Lee-Thorph, J., Rosqvistd, G., Racki, F., Staubwasserj, M., Schneiderk, R.R., Steigl, E.J., (2004). Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
Menking, K.M., Anderson, R.Y., (2003). Contributions of La Niña to middle Holocene drought and late Holocene moisture in the American Southwest. Geology 31, 11 937940.Google Scholar
Molina-Cruz, A., (1984). Radiolaria as indicators of upwelling processes: the Peruvian Connection. Marine Micropaleontology 9, 5375.Google Scholar
Molina-Cruz, A., (1988). Late Quaternary oceanography of the Mouth of the Gulf of California: the polycystine connection. Paleoceanography 3, 4 447459.Google Scholar
Molina-Cruz, A., Welling, L.A., Caudillo-Bohorquez, A., (1999). Radiolarian distribution in the water column, southern Gulf of California, and its implication in thanatocoenose constitution. Marine Micropaleontology 37, 149171.Google Scholar
Molina-Cruz, A., Pérez-Cruz, L., Monreal-Gómez, M.A., (2002). Laminated sediments in the Bay of La Paz, Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology 49, 14011410.Google Scholar
Monreal-Gómez, M.A., Molina-Cruz, A., Salas-de-León, D.A., (2001). Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. Journal of Marine Systems 30, 305315.Google Scholar
Moore, T.C., (1978). The distribution of radiolarian assemblages in the modern and ice-age Pacific. Marine Micropaleontology 3, 229266.Google Scholar
O'Brien, S.R., Mayewsky, A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I., (1995). Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, 19621964.Google Scholar
Pérez-Cruz, L., Machain-Castillo, M.L., (1999). Benthic foraminifera in the oxygen minimum zone, continental Shelf of the Gulf of Tehuantepec, Mexico. Journal of Foraminiferal Research 20, 4 312325.CrossRefGoogle Scholar
Pérez-Cruz, L., Molina-Cruz, A., (1988). El Niño 1983: effect on the distribution of silicoflagellates in the Gulf of California. Ciencias Marinas 14, 3 938.Google Scholar
Pisias, N.G., (1978). Paleoceanography of the Santa Barbara Basin during the last 8000 years. Quaternary Research 10, 366384.Google Scholar
Pisias, N.G., (1986). Vertical water circulation and the distribution of Radiolaria in surface sediments of the Gulf of California. Marine Micropaleontology 10, 189205.Google Scholar
Rack, F.R., Bloomer, S., Stein, R., Merrill, R., (1995). Interpretation of magnetic susceptibility and digital color records from ODP Site 893, Santa Barbara Basin: implications for Late Quaternary climatic variability in the Northeast Pacific. Proceedings of 5th International Conference on Paleoceanography, Halifax, N.S., 10–14 October 201.Google Scholar
Roden, G.I., (1972). Thermohaline structure and baroclinic flow across the Gulf of California entrance and in the Revillagigedo Islands region. Journal of Physical Oceanography 2, 2 177183.Google Scholar
Sancetta, C., (1995). Diatoms in the Gulf of California: seasonal flux patterns and the sediment record for the last 15,000 years. Paleoceanography 10, 6784.Google Scholar
Steig, E.J., (1999). Mid-Holocene climate change. Science 286, 14851487.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon age calibration. Radiocarbn 40, 10411083.Google Scholar
Stuiver, M., Reimer, P.J. Reimer, R.W., (2005). CALIB 5.0 (http//:www.programanddocuments).Google Scholar
Thompson, R., Oldfield, F., (1986). Environmental Magnetism. Allen and Unwin (Publishers) Ltd., London.CrossRefGoogle Scholar
Thunnell, R., Pride, C., Tappa, E., Muller-Karger, F., (1993). Varve formation in the Gulf of California: Insights from time series sediment trap sampling and remote sensing. Quaternary Science Review 12, 451464.Google Scholar
Weinheimer, A.L., Cayan, D.R., (1997). Radiolarian assemblages from Santa Barbara Basin sediments: Recent interdecadal variability. Paleoceanography 12, 5 658670.Google Scholar
Welling, L.A., Pisias, N.G., (1998). How do radiolarian sediment assemblages represent surface ocean ecology in the central equatorial Pacific?. Paleoceanography 13, 2 131149.Google Scholar
Welling, L.A., Pisias, N.G., Johnson, E.S., White, J.R., (1996). Distribution of polycistine radiolaria and their relation to the physical environment during the 1992 El Niño and following cold event. Deep Sea Research II 43, 4–6 14131434.Google Scholar