Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:45:33.591Z Has data issue: false hasContentIssue false

Chronostratigraphy and lake-level changes of Laguna Cari-Laufquén, Río Negro, Argentina

Published online by Cambridge University Press:  20 January 2017

Alyson Cartwright*
Affiliation:
University of Arizona, Department of Geosciences, Tucson, AZ, 85721, USA
Jay Quade
Affiliation:
University of Arizona, Department of Geosciences, Tucson, AZ, 85721, USA
Scott Stine
Affiliation:
California State University East Bay, Department of Geography and Environmental Sciences, Hayward, CA, 94542, USA
Kenneth D. Adams
Affiliation:
Desert Research Institute, Division of Earth and Ecosystem Sciences, Reno, NV, 89512, USA
Wallace Broecker
Affiliation:
Columbia University, Lamont-Doherty Earth Observatory, New York, NY, 10027, USA
Hai Cheng
Affiliation:
University of Minnesota, Department of Geology and Geophysics, Minneapolis, MN, 55455, USA Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
*
Corresponding author. E-mail address:[email protected] (A. Cartwright).

Abstract

Evidence from shoreline and deep-lake sediments show Laguna Cari-Laufquén, located at 41°S in central Argentina, rose and fell repeatedly during the late Quaternary. Our results show that a deep (> 38 m above modern lake level) lake persisted from no later than 28 ka to 19 ka, with the deepest lake phase from 27 to 22 ka. No evidence of highstands is found after 19 ka until the lake rose briefly in the last millennia to 12 m above the modern lake, before regressing to present levels. Laguna Cari-Laufquén broadly matches other regional records in showing last glacial maximum (LGM) highstands, but contrasts with sub-tropical lake records in South America where the hydrologic maximum occurred during deglaciation (17–10 ka). Our lake record from Cari-Laufquén mimics that of high-latitude records from the Northern Hemisphere. This points to a common cause for lake expansions, likely involving some combination of temperature depression and intensification of storminess in the westerlies belt of both hemispheres during the LGM.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, K.D. Lake levels and sedimentary environments during deposition of the Trego Hot Springs and Wono tephras in the Lake Lahontan basin, Nevada, USA. Quaternary Research 73, (2010). 119129.CrossRefGoogle Scholar
Anselmetti, F., Ariztegui, D., De Batist, M., Gebhardts, A., Haberzettl, T., Niessen, F., Ohlendorf, C., and Zolitschka, B. Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology (2008). 120.Google Scholar
Antevs, E. The Great Basin, with emphasis on glacial and post-glacial times—climate changes and pre-white man. Bulletin of the University of Utah Biological Services 38, (1948). 168191.Google Scholar
Barker, G. The biology of terrestrial molluscs. Barker, G.M. Gastropods on Land: Phylogeny, Diversity and Adaptive Morphology. (2001). CABI Publishing, Oxon, UK. 139142.Google Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., and Reches, Z. Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea. Quaternary Research 57, (2002). 921.CrossRefGoogle Scholar
Benson, L., Currey, D., Dorn, R., Lajoie, K., Oviatt, C., Rombinson, S., Smith, G., and Stine, S. Chronology of expansion and contraction of four Great Basin lake Systems during the past 35,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 78, (1990). 241286.Google Scholar
Benson, L., and Thompson, R. Lake-level variation in the Lahontan Basin for the past 50,000 years. Quaternary Research 28, (1987). 6985.CrossRefGoogle Scholar
Blard, P., Lavé, J., Farley, K., Fornari, M., Jiménez, N., and Ramierz, V. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the palaeolake Tauca episode (17–15 ka, Heinrich 1). Quaternary Science Reviews 28, (2009). 34143427.CrossRefGoogle Scholar
Broecker, W., and Kaufman, A. Radiocarbon chronology of Lake Lahontan and Lake Bonneville II. Geological Society of America Bulletin 76, (1965). 537566.Google Scholar
Cheng, H., Edwards, L., Hoff, J., Gallup, C., Richards, D., and Asmerom, Y. The half-life of uranium-234 and thorium-230. Chemical Geology 169, (2000). 1733.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.C., Woodhead, J., Hellstrom, J., Wang, Y.J., Kong, X.G., and Wang, X.F. A new generation of Th-230 dating techniques: tests of precision and accuracy. Geochimica et Cosmochimica Acta 72, (2008). A157-A157 Google Scholar
Cheng, H., Fleitmann, D., Edwards, R.L., Wang, X.F., Cruz, F.W., Auler, A.S., Mangini, A., Wang, Y.J., Kong, X.G., Burns, S.J., and Matter, A. Timing and structure of the 8.2 ky event inferred from δ18O records of stalagmites from China, Oman and Brazil. Geology 37, (2009). 10071010.CrossRefGoogle Scholar
Chiang, J., Biasutti, M., and Battisti, D. Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18, (2003). 10941111.CrossRefGoogle Scholar
Denton, G., Lowell, T., Moreno, P., Andersen, B., and Schluchter, C. Interhemispheric linkage of paleoclimate during the last glaciation. Geografiska Annaler Series A 81A, (1999). 167229.Google Scholar
Eardley, A., Gvosdetsky, V., and Marsell, R. Hydrology of Lake Bonneville and sediments and soils of its basin. Geological Society of America Bulletin 68, (1957). 11411201.CrossRefGoogle Scholar
Edwards, R.L., Chen, J.H., and Wasserburg, G.J. 238U, 234U, 230Th, 232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, (1987). 175192.CrossRefGoogle Scholar
Fontugne, M., Kuzucuoglu, M., Karabiyikoglu, C., Hatte, C., and Pastre, J. From pleniglacial to Holocene: a 14C chronostratigraphy of environmental changes in the Konya Plain, Turkey. Quaternary Science Reviews 18, (1999). 573591.CrossRefGoogle Scholar
Galloway, R.M., Markgraf, V., and Bradbury, J.P. Dating of shorelines of lakes in Patagonia, Argentina. Journal of South American Earth Science 1, (1988). 195198.Google Scholar
Garreaud, R. Precipitation and circulation covariability in the extratropics. Notes and Correspondence 20, (2007). 47894797.Google Scholar
Gilli, A., Anselmetti, F., Ariztegui, D., Beres, M., McKenzi, J., and Markgraf, V. Seismic stratigraphy, buried beach ridges and contourite drifts: the Late Quaternary history of the closed Lago Cardiel basin, Argentina (49°S). Sedimentology 52, (2005). 123.CrossRefGoogle Scholar
Godsey, H., Currey, D., and Chan, M. New evidence for an extended occupation of the Provo shoreline and implications for regional climate change, Pleistocene Lake Bonneville, Utah, USA. Quaternary Research 63, (2005). 212223.Google Scholar
Graham, S., Famiglietti, J., and Maidment, D. Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies. Water Resources Research 35, (1999). 583587.CrossRefGoogle Scholar
Grosjean, M. Paleohydrology of Laguna Lejía (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeography, Palaeoclimatology, Palaeoecology 109, (1994). 89100.Google Scholar
Haberzettl, T., Corbella, H., Michael, F., Janssen, S., Lucke, A., Mayr, C., Ohlendorf, C., Schabitz, F., Schleser, G., Wille, M., Wulf, S., and Zolitschka, B. Late glacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of lacustrine record from Laguna Potrok Aike, Argentina. The Holocene 17, (2007). 297310.Google Scholar
Held, I., and Soden, B. Robust responses of the hydrological cycle to global warming. Journal of Climate 19, (2006). 56865699.Google Scholar
Hostetler, S., and Benson, L. Paleoclimatic implications of the high stand of Lake Lahontan derived from models of evaporation and lake level. Climate Dynamics 4, (1990). 207217.CrossRefGoogle Scholar
Hulton, N., Purves, R., McCulloch, R., Sugden, D., and Bentley, M. The Last Glacial Maixmum and deglaciation in southern South America. Quaternary Science Reviews 21, (2002). 233241.Google Scholar
Jennerjahn, T., Ittekkot, V., Arz, H., Behling, H., Patzold, J., and Wefer, G. Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306, (2004). 22362239.Google Scholar
Jones, M., Roberts, C., and Leng, M. Quantifying climatic change through the last glacial–interglacial transition based on lake isotope palaeohydrology from central Turkey. Quaternary Research 67, (2007). 463473.CrossRefGoogle Scholar
Kaplan, M., Ackert, R. Jr., Singer, B., Douglass, D., and Kurz, M. Cosmogenic nuclide chronology of millennial-scale glacial advances during isotope stage 2 in Patagonia. Geological Society of America Bulletin 116, (2004). 308321.Google Scholar
Kaufman, A., Yechieli, Y., and Gardosh, M. Re-evaluation of the lake-sediment chronology in the Dead Sea basin, Israel, based on new 230Th/U dates. Quaternary Research 38, (1992). 292304.Google Scholar
Kim, S.-T., and O'Neil, J.R. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, (1997). 34613475.Google Scholar
Lamy, F., Kaiser, J., Arz, H., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., and Toggweiler, J. Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth and Planetary Science Letters 259, (2007). 400413.Google Scholar
Lowell, T., Heusser, C., Andersen, B., Moreno, P., Hauser, A., Heusser, L., Schluchter, C., Marchant, D., and Denton, G. Interhemispheric correlation of late Pleistocene glacial events. Science 269, (1995). 141149.CrossRefGoogle ScholarPubMed
Markgraf, V. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102, (1993). 5368.Google Scholar
Markgraf, V. Past climates of South America. Climates of the Southern Continents: Present, Past and Fugure. (1998). John Wiley and Sons Ltd., 249264.Google Scholar
Markgraf, V., Whitlock, C., and Haberle, S. Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallin Pollux, Coyhaique, Province Aisen. Palaeogeography, Palaeoclimatology, Palaeoecology 254, (2007). 492507.Google Scholar
Mayr, C., Wille, M., Haberzettl, T., Fey, M., Janssen, S., Lücke, A., Ohlendorf, C., Oliva, G., Schäbitz, F., Schleser, G.H., and Zolitschka, B. Holocene variability of the Southern Hemisphere westerlies in Argentinian Patagonia (52°S). Quaternary Science Reviews 26, (2007). 579584.CrossRefGoogle Scholar
Mercer, J. Climate processes and climate sensitivity in simultaneous climatic change in both hemispheres and similar bipolar inter-glacial warming: evidence and implications. American Geophysical Union, Geophysical Monograph 29, (1984). 20313.Google Scholar
Miller, A. The climate of Chile in climates of Central and South America. World Survey of Climatology (1976). 113130.Google Scholar
Moreno, P., Lowell, T., Jacobson, G., and Denton, G. Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41°S). Geografiska Annaler Series A 81A, (1999). 285312.Google Scholar
Morrison, R. Quaternary soil stratigraphy—concepts, methods, problems. Mahaney, W.C. Quaternary Soils: Norwich, Geoabstracts. (1978). 77108.Google Scholar
Morrison, R.B. Quaternary stratigraphic, hydrologic, and climatic history of the Great Basin, with emphasis on Lakes Lahontan, Bonneville, and Tecopa. Morisson, R.B. Quaternary Nonglacial Geology; Conterminous U.S.: Geological Society of America. (1991). The Geology of North America, Boulder, Colorado. 283320.Google Scholar
Mourguiart, P., Argollo, J., Correge, T., Martin, L., Montenegro, M., Sifeddine, A., and Wirrmann, D. Changements limnologiques et climatologiques dans le basin du lac Titicaca (Bolivie) depuis 30 000 ans. Earth and Planetary Sciences 325, (1997). 139146.Google Scholar
Moy, M., Dunbar, B., Moreno, I., Francois, P., Villa-Martínez, R., Mucciarone, M., Guilderson, P., and Garreaud, D. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quaternary Science Reviews 27, (2008). 13351349.Google Scholar
Moy, M., Moreno, P.I., Dunbar, B., Kaplan, M.R., Francois, P., Villalba, R., and Hazerbertl, T. Climate change in southern America during the last two millennia. Past Climate Variability in South America and Surrounding Regions. Vimeaux, et al. Developments in Paleoenvironmental Research 14, (2009). Springer, 353393.CrossRefGoogle Scholar
Oviatt, C. Lake Bonneville fluctuations and global climate change. Geology 25, (1997). 155158.Google Scholar
Oviatt, C., Currey, D., and Sack, D. Radiocarbon chronology of Lake Bonneville, Eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 99, (1992). 225241.Google Scholar
Placzek, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, (2006). 515532.Google Scholar
Quade, J., and Broecker, W. Dryland hydrology in a warmer world: lessons from the Last Glacial period. The European Journal Special Topics 176, (2009). 2136.CrossRefGoogle Scholar
Quade, J., Rech, J., Betancourt, J., Latorre, C., Rylander, K., and Fisher, T. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, (2008). 343360.CrossRefGoogle Scholar
Reimer, P., Baillie, L., Bard, E., Bayliss, A., Beck, W., Blackwell, G., Bronk Ramsey, C., Buck, E., Burr, S., Edwards, L., Friedrich, M., Grootes, M., Guilderson, P., Hajdas, I., Heaton, J., Hogg, G., Hughen, A., Kaiser, F., Kromer, B., McCormac, G., Manning, W., Reimer, W., Richards, A., Southon, R., Talamo, S., Turney, M., van der Plicht, J., and Weyhenmeyer, E. IntCal09 and Marine 09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Reissig, M., Trochine, C., Queimalinos, C., Balsiero, E., and Modenutti, B. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation 132, (2006). 437447.CrossRefGoogle Scholar
Roberts, N. Age, palaeoenvironments, and climatic significance of late Pleistocene Konya lake, Turkey. Quaternary Research 19, 154–171 (1983). 352355.CrossRefGoogle Scholar
Rojas, M., Moreno, P., Kageyama, M., Crucifix, M., Hewitt, C., Abe-Ouchi, A., Ohgaito, R., Brady, C., and Hope, P. The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dynamics 32, (2009). 525548.CrossRefGoogle Scholar
Romanek, C.S., Grossman, E.T., and Morse, J.W. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta (1992). 419430.Google Scholar
Schaefer, J., Denton, G., Barrell, D., Ivy-Ochs, S., Kubik, P., Andersen, B., Phillips, F., Lowell, T., and Schluchter, C. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312, (2006). 15101513.CrossRefGoogle ScholarPubMed
Seltzer, G., Rodbell, D., Baker, P., Fritz, S., Tapia, P., Rowe, H., and Dunbar, R. Early warming of tropical South America at the last glacial–interglacial transition. Science 31, (2002). 16851686.Google Scholar
Street, F.A., and Grove, A.T. Global maps of lake-level fluctuations since 30,000 yr B.P.. Quaternary Research 12, (1979). 83118.Google Scholar
Stine, S., and Stine, M. A record from Lake Cardiel of climate change in southern South America. Nature 345, (1990). 705708.CrossRefGoogle Scholar
Stuiver, M., and Reimer, R.W. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Stuut, J., and Lamy, F. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research 62, (2004). 301309.Google Scholar
Torfstein, A., Gavrieli, I., Katz, A., Kolodny, Y., and Stein, M. Gypsum as a monitor of the paleo-limnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 72, (2008). 24912509.Google Scholar
Wainer, I., Clauzet, G., Ledru, M., Brady, E., and Otto-Bliesner, B. Last glacial maximum in South America: paleoclimate proxies and model results. Geophysical Research Letters 32, (2005). L0872 Google Scholar
Weng, C., Bush, M., Curtis, J., Kolata, A., Dillehay, T., and Binford, M. Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research 66, (2006). 8796.Google Scholar
Whatley, R.C., and Cusminsky, G.C. Lacustrine ostracoda and late Quaternary palaeoenvirnoments from the Lake Cari-Laufquén region, Rio Negro Province, Argentina. Palaeogeography, Palaeolimnology, Palaecology 151, (1999). 229239.Google Scholar
Supplementary material: PDF

Cartwright et al. Supplementary Material

Table S1

Download Cartwright et al. Supplementary Material(PDF)
PDF 1.2 MB