Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T13:27:05.711Z Has data issue: false hasContentIssue false

Chronological and rock magnetic constraints on the transition of the Quaternary paleoclimate in the western Qaidam Basin, NE Tibetan Plateau

Published online by Cambridge University Press:  14 April 2021

Weilin Zhang*
Affiliation:
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing100101, China CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China
Tao Li
Affiliation:
CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China University of Chinese Academy of Sciences, Beijing100049, China
Xiaomin Fang
Affiliation:
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing100101, China CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China
Tao Zhang
Affiliation:
School of Earth Sciences & Key Laboratory of Western China's Mineral Resources of Gansu Province, Lanzhou University, Lanzhou730000, China
Maodu Yan
Affiliation:
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing100101, China CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China
Jinbo Zan
Affiliation:
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing100101, China CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China
Yibo Yang
Affiliation:
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing100101, China CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China
Dhan Bahadur Khatri
Affiliation:
CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100010, China University of Chinese Academy of Sciences, Beijing100049, China
*
*Corresponding author: Weilin Zhang, Email: [email protected]

Abstract

A closed Quaternary saline paleolake, currently still a lake and named Dalangtan after one of its largest sub-basins, has widely distributed sediments in the western Qaidam Basin, NE Tibetan Plateau. Lacustrine salt minerals and fine sediments from this paleolake provide an environmental record for investigating paleoclimatic evolution in the Asian interior. However, detailed continuous Pliocene–Quaternary paleoclimatic records are broadly lacking from the NE Tibetan Plateau owing to poor exposure of the outcrops in section. For this study, we performed a detailed magnetostratigraphic dating and rock magnetic analysis on a 590-m-long core from the SG-5 borehole in the western Qaidam Basin. The results demonstrate that the lacustrine sediments in the SG-5 borehole were deposited more than ~3.0 Ma. Saline minerals began to increase at 1.2 Ma, and the magnetic susceptibility (χ) also changed at that time; the percentage frequency-dependent magnetic susceptibility was relatively low and uniform throughout the whole core. These observations, combined with the χ, pollen, salt ion, and grain-size records from other boreholes, indicate that the western Qaidam Basin and the greater Asian interior had a significant climate transition at 1.2 Ma during an extreme drought.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since Late Miocene times. Nature 411, 6266.Google Scholar
Ao, H., Deng, C., Dekkers, M.J., Liu, Q., 2010. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth and Planetary Science Letters 292, 191200.CrossRefGoogle Scholar
Berger, A., Li, X.S., Loutre, M.F., 1999. Modelling Northern Hemisphere ice volume over the last 3 Ma. Quaternary Science Reviews 18, 111.Google Scholar
Bosboom, R.E., Abels, H.A., Hoorn, G., Van den berg, B.C.J., Guo, Z., Dupont-Nivet, G., 2014. Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO). Earth and Planetary Science Letters 389, 3442.CrossRefGoogle Scholar
Bosboom, R.E., Dupont-Nivet, G., Houben, A.J.P., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., et al. , 2011. Late Eocene sea retreat from the Tarim Basin (West China) and concomitant Asian paleoenvironmental change. Paleogeography, Paleoclimatology, Paleoecology 299, 385398.CrossRefGoogle Scholar
Cai, M., Fang, X., Wu, F., Miao, Y., Appel, E., 2012. Pliocene–Pleistocene stepwise drying of central Asia: evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Global and Planetary Change 94–95, 7281.CrossRefGoogle Scholar
Champion, D.E, Lanphere, M.A., Kuntz, M.A., 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. Journal of Geophysical Research 93, 1166711680.CrossRefGoogle Scholar
Chang, H., An, Z., Liu, W., Ao, H., Qiang, X., Song, Y., Lai, Z., 2014. Quaternary structural partitioning within the rigid Tarim plate inferred from magnetostratigraphy and sedimentation rate in the eastern Tarim Basin in China. Quaternary Research 81, 424432.CrossRefGoogle Scholar
Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25, 31503184.CrossRefGoogle Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.CrossRefGoogle Scholar
Ding, Z.L., Ranov, V., Yang, S.L., Finaev, A., Han, J.M., Wang, G.A., 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200, 387400.CrossRefGoogle Scholar
Duan, Z., Hu, W., 2001. The accumulation of potash in a continental basin: the example of the Qarhan saline lake, Qaidam Basin, West China. European Journal of Mineralogy 13, 12231233.CrossRefGoogle Scholar
Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S., Fang, X., 2007. Tibetan Plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635638.CrossRefGoogle Scholar
Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, New York.Google Scholar
Fang, X., An, Z., Clemens, S., Zan, J., Shi, Z., Yang, S., Han, X., 2020. The 3.6-Ma aridity and westerlies history over mid-latitude Asia linked with global climatic cooling. Proceedings of the National Academy of Sciences 117, 2472924734.CrossRefGoogle Scholar
Fang, X., Galy, A., Yang, Y., Zhang, W., Ye, C., Song, C., 2019. Temperature forcing paleogene chemical weathering intensity in the northern Tibet Plateau. Geology 47, 992996.CrossRefGoogle Scholar
Fang, X., Li, J., Van der Voo, R., 1999. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800,000 years B.P. related to Tibetan uplift. Earth and Planetary Science Letters 165, 129144.CrossRefGoogle Scholar
Fang, X., Shi, Z., Yang, S., Yan, M., Li, J., Jiang, P., 2002. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang. Chinese Science Bulletin 47, 13811387.CrossRefGoogle Scholar
Felzer, B., Oglesby, R.J., Hong, S., Iii, T.W., Hyman, D.E., Prell, W.L., Kutzbach, J.E., 1995. A systematic study of GCM sensitivity to latitudinal changes in solar radiation. Journal of Climate 8, 877887.2.0.CO;2>CrossRefGoogle Scholar
Gradstein, F., Ogg, J., Schmitz, M., Ogg, G., 2012. The Geologic Time Scale 2012. Amsterdam, Netherlands: Elsevier.Google Scholar
Gu, S., Xu, W., Xue, C., Di, S., Yang, F., Di, H., Zhao, D., 1990. Regional Petroleum Geology of Qinghai-Xizang Oil-Gas Field. [In Chinese.] Petroleum Publishing House, Beijing.Google Scholar
Guo, P., Liu, C., Huang, L., Yu, M., Wang, P., Zhang, G., 2018. Palaeohydrological evolution of the Late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: tectonic vs. climatic control. Global and Planetary Change 165, 4461.CrossRefGoogle Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159163.CrossRefGoogle ScholarPubMed
Han, W., Fang, X., Berger, A., 2012. Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quaternary Research 78, 174184.CrossRefGoogle Scholar
Han, W., Fang, X., Ye, C., Teng, X., Zhang, T., 2014. Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet. Global and Planetary Change 116, 6875.CrossRefGoogle Scholar
Han, W., Ma, Z., Lai, Z., Appel, E., Fang, X., Yu, L., 2013. Wind erosion on the north-eastern Tibetan Plateau: constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin. Earth Surface Processes and Landforms 39, 779789.CrossRefGoogle Scholar
Huang, H.C., Huang, Q.H., Ma, Y.S., 1996. Geology of Qaidam Basin. In: Huang, H.C., Geology of Qaidam and Its Petroleum Prediction. [In Chinese.] Geological Publishing House, Beijing, pp. 188.Google Scholar
Kapp, P., Pelletier, J.D., Rohrmann, A., Heermance, R., Russell, J., Ding, L., 2011. Wind erosion in the Qaidam Basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today 21, 410.CrossRefGoogle Scholar
Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F., Prell, W.L., 1989. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: numerical experiments. Journal of Geophysical Research 94, 1839318407.CrossRefGoogle Scholar
Kutzbach, J.E., Prell, W.L., Ruddiman, W.F., 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology 101, 177190.CrossRefGoogle Scholar
Laj, C., Channell, J.E.T., 2007. Geomagnetic excursions. In: Kono, M. (Ed.), Geomagnetism Treatise on Geophysics 5, Elsevier, Amsterdam, pp. 373416.CrossRefGoogle Scholar
Langereis, C.G., Dekkers, M.J., Lange, G.J., Paterne, M., Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International 129, 7594.CrossRefGoogle Scholar
Li, J., Li, M., Fang, X., Zhang, G., Zhang, W., Liu, X., 2017. Isotopic composition of gypsum hydration water in deep Core SG-1, western Qaidam Basin (NE Tibetan Plateau): implications for paleoclimatic evolution. Global and Planetary Change 155, 7077.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography and Paleoclimatology 20, 522533.Google Scholar
Liu, D., Fang, X., Gao, J., Wang, Y., Zhang, W., Miao, Y., Liu, Y., Zhang, Y., 2009. Cenozoic stratigraphy deformation history in the central and eastern of Qaidam Basin by the balance section restoration and its implication. Acta Geologica Sinica 83, 359371.CrossRefGoogle Scholar
Lu, Y., Fang, X., Appel, E., Wang, J., Herb, C., Han, W., Wu, F., Song, C., 2015. A 7.3–1.6 Ma grain size record of interaction between anticline uplift and climate change in the western Qaidam Basin, NE Tibetan Plateau. Sedimentary Geology 319, 4051.CrossRefGoogle Scholar
, L., Fang, X., Mason, J.A., Li, J., An, Z., 2001. The evolution of coupling of Asian winter monsoon and high latitude climate of Northern Hemisphere. Science in China Series D: Earth Sciences 44, 185191.CrossRefGoogle Scholar
Lund, S., Stoner, J.S., Channell, J.E.T., Acton, G., 2006. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planetary Interiors 156, 194204.CrossRefGoogle Scholar
Maher, B.A., 1988. Magnetic properties of some synthetic submicron magnetite. Geophysical Journal International 94, 8396.CrossRefGoogle Scholar
Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics 31, 357396.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M., 1997. The mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151, 117123.CrossRefGoogle Scholar
Ramstein, G., Fluteau, F., Besse, J., Joussaume, S., 1997. Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788795.CrossRefGoogle Scholar
Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of Late Cenozoic climate. Nature 359, 117122.CrossRefGoogle Scholar
Roberts, A.P., Cui, Y., Verosub, K.L., 1995. Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research: Solid Earth 100, 1790917924.CrossRefGoogle Scholar
Ruddiman, W.F., Kutzbach, J.E., 1989. Forcing of Late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. Journal of Geophysical Research 94, 1840918427.CrossRefGoogle Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353412.CrossRefGoogle Scholar
Schmieder, F., von Dobeneck, T., Bleil, U., 2000. The mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth and Planetary Science Letters 179, 539549.CrossRefGoogle Scholar
Shen, Z., Cheng, G., Le, C., 1993. Magnetostratigraphy and chronostratigraphy. In: Shen, Z., The Division and Sedimentary Environment of Quaternary Salt-Bearing Strata in Qaidam Basin. [In Chinese.] Geological Publishing House, Beijing, pp. 30166.Google Scholar
Shi, L., Zheng, M., Li, J., Wang, Y., Hou, X., Ma, N., 2010. Magnetostratigraphy of Liang ZK05 borehole in Dalangtan, Qaidam Basin. [In Chinese.] Acta Geologica Sinica 84, 16311640.Google Scholar
Song, Y., Fang, X., King, J.W., Li, J., Naoto, I., An, Z., 2014. Magnetic parameter variations in the Chaonaloess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition. Quaternary Research 81, 433444.CrossRefGoogle Scholar
Song, Y., Luo, D., Du, J., Kang, S., Cheng, P., Fu, C., Guo, X., 2018. Radiometric dating of late Quaternary loess in the northern piedmont of South Tianshan Mountains: implications for reliable dating. Geological Journal 53, 417426.CrossRefGoogle Scholar
Su, Q., Nie, J., Meng, Q., Heermance, R., Gong, L., Luo, Z., Wang, Z., Zhang, R., Garzione, C., 2019. Central Asian drying at 3.3 Ma linked to tropical forcing? Geophysical Research Letters 46. https://doi.org/10.1029/2019GL084648.CrossRefGoogle Scholar
Sun, J., Liu, T., 2006. The age of the Taklimakan Desert. Science 312, 1621.CrossRefGoogle ScholarPubMed
Tan, M., Zhang, W., Fang, X., Yan, M., Zan, J., Zhang, T., 2020. Rock magnetic record of core SG-3 since 1 Ma in the western Qaidam Basin and its paleoclimate implications for the NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 560. https://doi.org/10.1016/j.palaeo.2020.10994.CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, London.CrossRefGoogle Scholar
Thouveny, N., Bourlès, D.L., Saracco, G., Carcaillet, J., Bassinot, F., 2008. Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes: clue for an orbital influence on the geodynamo? Earth and Planetary Science Letters 275, 269284.CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., 2004. Late Cenozoic right lateral movement along the Wenquan Fault and its implications for the kinematics of the Qaidam Basin, the northeastern margin of the Tibetan Plateau. International Geology Review 46, 861879.CrossRefGoogle Scholar
Wang, E., Xu, F., Zhou, J., Wan, J., Burchfiel, B. C., 2006. Eastward migration of the Qaidam Basin and its implications for Cenozoic evolution of the Altyn Tagh Fault and associated river systems. Geological Society of America Bulletin 118, 349365.CrossRefGoogle Scholar
Wang, J., Fang, X., Appel, E., Song, C., 2012. Pliocene–Pleistocene climate change at the NE Tibetan Plateau deduced from lithofacies variation in the drill core SG-1, western Qaidam Basin, China. Journal of Sedimentary Research 82, 933952.CrossRefGoogle Scholar
Wang, J., Fang, X., Appel, E., Zhang, W., 2013. Magnetostratigraphic and radiometric constraints on salt formation in the Qaidam Basin, NE Tibetan Plateau. Quaternary Science Reviews 78, 5364.CrossRefGoogle Scholar
Wang, J., Wang, Y., Liu, Z., Li, J., Xi, P., 1999. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Paleogeography, Paleoclimatology, Paleoecology 152, 3747.CrossRefGoogle Scholar
Wu, F., Fang, X., Ma, Y., Herrmann, M., Mosbrugger, V., An, Z., Miao, Y., 2007. Plio-Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth and Planetary Science Letters 257, 160169.CrossRefGoogle Scholar
Xia, W., Zhang, N., Yuan, X., Fan, L., Zhang, B., 2001. Cenozoic Qaidam Basin, China: a stronger tectonic inversed, extensional rifted basin. American Association of Petroleum Geologist Bulletin 85, 715736.Google Scholar
Yang, L., Zhang, W., Fang, X., Cai, M., Lu, Y., 2020b. Aridification recorded by lithofacies and grain size in a continuous Pliocene–Quaternary lacustrine sediment record in the western Qaidam Basin, NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 556. https://doi.org/10.1016/j.palaeo.2020.109903.CrossRefGoogle Scholar
Yang, S., Li, D., Liu, N., Zan, J., Liu, W., Kang, J., Murodov, A., Fang, X., 2020a. Quartz optically stimulated luminescence dating of loess in Tajikistan and its paleoclimatic implications for arid central Asia since the Late Glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 556. https://doi.org/10.1016/j.palaeo.2020.109881.CrossRefGoogle Scholar
Yang, Y., Fang, X., Appel, E., Galy, A., Li, M., Zhang, W., 2013. Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1. Quaternary Research 80, 586595.CrossRefGoogle Scholar
Yang, Y., Fang, X., Koutsodendris, A., Ye, C., Yang, R., Zhang, W., Liu, X., Gao, S., 2016. Exploring Quaternary paleolake evolution and climate change in the western Qaidam Basin based on the bulk carbonate geochemistry of lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 152161.CrossRefGoogle Scholar
Yin, A., Dang, Y., Zhang, M., Chen, X., McRivette, M.W., 2008. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin 120, 847876.CrossRefGoogle Scholar
Yin, A., Rumelhart, P.E., Bulter, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., et al. , 2002. Tectonic history of the Altyn Tagh Fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin 114, 12571295.2.0.CO;2>CrossRefGoogle Scholar
Yuan, J., Huo, C., Cai, K., 1983. The high mountain-deep basin saline environment: a new genetic model of salt deposits. [In Chinese with English abstract.] Geological Review 29, 159165.Google Scholar
Zan, J., Fang, X., Li, X., Zhang, W., Yan, M., Shen, M., 2018. Late Pliocene monsoonal rainfall gradients in western China recorded by the eolian deposits from the Linxia Basin, NE Tibetan Plateau. Journal of Geophysical Research: Atmospheres 123, 80478061.Google Scholar
Zan, J., Fang, X., Yang, S., Nie, J., Li, X., 2010. A rock magnetic study of loess from the West Kunlun Mountains. Journal of Geophysical Research 115, B10101. https://doi.org/10.1029/2009JB007184.CrossRefGoogle Scholar
Zan, J., Fang, X., Yang, S., Yan, M., 2013. Evolution of the arid climate in High Asia since ~1 Ma: evidence from loess deposits on the surface and rims of the Tibetan Plateau. Quaternary International 313–314, 210217.CrossRefGoogle Scholar
Zhang, W., Appel, E., Fang, X., Setzer, F., Song, C., Meng, Q., Yan, M., 2020. New paleomagnetic constraints on syntectonic growth strata in the western Qaidam Basin, NE Tibetan Plateau. Tectonophysics 780. https://doi.org/10.1016/j.tecto.2020.228401.CrossRefGoogle Scholar
Zhang, W., Appel, E., Fang, X., Song, C., Cirpka, O., 2012a. Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quaternary Research 78, 139148.CrossRefGoogle Scholar
Zhang, W., Appel, E., Fang, X., Song, C., Setzer, F., Herb, C., Yan, M., 2014. Magnetostratigraphy of drill-core SG-1b in the western Qaidam Basin (NE Tibetan Plateau) and tectonic implications. Geophysical Journal International 197, 90118.CrossRefGoogle Scholar
Zhang, W., Appel, E., Fang, X., Yan, M., Song, C., Cao, L., 2012b. Paleoclimatic implications of magnetic susceptibility in Late Pliocene–Quaternary sediments from deep drilling core SG-1 in the western Qaidam Basin NE Tibetan Plateau. Journal of Geophysical Research: Solid Earth 117, B06101. https://doi.org/10.1029/2011JB008949.Google Scholar
Zhang, W., Fang, X., Song, C., Appel, E., Yan, M., Wang, Y., 2013. Late Neogene magnetostratigraphy in the western Qaidam Basin (NE Tibetan Plateau) and its constraints on active tectonic uplift and progressive evolution of growth strata. Tectonophysics 599, 107116.CrossRefGoogle Scholar
Zhou, J., Xu, F., Wang, T., Gao, A., Yin, C., 2006. Cenozoic deformation history of the Qaidam Basin, NW China: results from cross-section restoration and implications for Qinghai–Tibet Plateau tectonics. Earth and Planetary Science Letters 243, 1952l0.CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material 1

Download Zhang et al. supplementary material(File)
File 88.1 KB
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material 2

Download Zhang et al. supplementary material(File)
File 146.9 KB