Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T01:58:04.108Z Has data issue: false hasContentIssue false

Changes in the source of nutrients associated with oceanographic dynamics offshore southern Chile (41°S) over the last 25,000 years

Published online by Cambridge University Press:  20 January 2017

Thomas J. Verleye*
Affiliation:
Research Unit Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 S8/WE13, 9000 Ghent, Belgium Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8200 Oostende, Belgium
Philippe Martinez
Affiliation:
Université Bordeaux 1, UMR 5805 EPOC, avenue des facultés, 33405 Talence cedex, France
Rebecca S. Robinson
Affiliation:
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
Stephen Louwye
Affiliation:
Research Unit Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 S8/WE13, 9000 Ghent, Belgium
*
*Corresponding author at: Research Unit Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 S8/WE13, 9000 Ghent, Belgium. Fax: + 32 59 34 21 31. E-mail address:[email protected] (T.J. Verleye).

Abstract

In order to obtain a better knowledge of past oceanographic variability offshore southern Chile, this study reappraises the changes in the sources of nutrients over the last 25 ka based on a detailed comparison of previously published nitrogen isotope and microfossil records (dinoflagellate cysts, coccoliths and diatoms) from ODP Site 1233 (41°S). Our findings support the main conclusions of Martinez et al. (2006) in the sense that both the Subantarctic Surface Water and the Gunther Undercurrent are potential sources for the recorded late Quaternary sedimentary δ15N signatures at Site 1233, with variable contributions of both sources during different time periods. This study indicates that Subantarctic Surface Water forms the main source for nutrients during the last glacial maximum (25–18.6 cal ka BP), the first part of the deglaciation (18.6–15.7 cal ka BP) and the Holocene (9.8 cal ka BP until present). An increased contribution of Equatorial Subsurface Water as a source of nutrients to the photic zone offshore southern Chile is observed between 14.4 and 9.8 cal ka BP, which is indicative for upwelling conditions at least after 13.2 cal ka BP as indicated by the microfossil data.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altabet, M.A., François, R., (1994). Sedimentary N isotopic ratio as a recorder for surface nitrate utilisation. Global Biogeochemical Cycles 8, 103116.Google Scholar
Altabet, M.A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., François, R., (1999). The N isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Research I 46, 655679.Google Scholar
Berger, W.H., Fischer, K., Lai, C., Wu, G., (1987). Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. SIO References 87–30, Google Scholar
Bertrand, S., Charlet, F., Charlier, B., Renson, V., Fagel, N., (2008). Climate variability of southern Chile since the last glacial maximum: a continuous sedimentological record from Lago Puyehue (40°S). Journal of Paleolimnology 39, 179195.Google Scholar
Bianchi, C., Gersonde, R., (2004). Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth and Planetary Science Letters 228, 407424.Google Scholar
Boltovskoy, E., (1976). Distribution of recent foraminifera of the South American region. Hedley, R.H., Adams, C.G. Foraminifera. Academic Press, London.171237.Google Scholar
Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C.E., Bowie, A.R., Buesseler, K.O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.T., McKay, R.M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., Zeldis, J., (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695702.Google Scholar
Boyd, P.W., Crossley, A.C., DiTullio, G.R., Griffiths, F.B., Hutchins, D.A., Queguiner, B., Sedwick, P.N., Trull, T.W., (2001). Control on phytoplankton growth by iron supply and irradiance in the Subantarctic Southern Ocean: experimental results from the SAZ project. Journal of Geophysical Research 106, 31,57331,584.CrossRefGoogle Scholar
Cromwell, T., (1953). Circulation in a meridional plane in the central equatorial Pacific. Journal of Marine Research 12, 196213.Google Scholar
Dale, B., (1983). Dinoflagellate resting cysts: ‘benthic plankton’. Fryxell, A.G. Survival, Strategies of the Algae. Cambridge University Press, New York.69136.Google Scholar
De Baar, H.J.W., De Jong, J.T.M., Bakker, D.C.E., Löscher, B., Veth, C., Bathmann, U., Smetacek, V., (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412415.Google Scholar
De Pol-Holz, R., Ulloa, O., Dezileau, L., Kaiser, J., Lamy, F., Hebbeln, D., (2006). Melting of the Patagonian Ice Sheet and deglacial perturbations of the N cycle in the eastern South Pacific. Geophysical Research Letters 33, 10.1029/2005GL024477(L04704).Google Scholar
De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., Hebbeln, D., (2007). Late Quaternary variability of sedimentary N isotopes in the eastern South Pacific Ocean. Paleoceanography 22, 10.1029/2006PA001308(PA2207).Google Scholar
Esper, O., Zonneveld, K.A.F., (2002). Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre. Marine Micropaleontology 46, 177208.Google Scholar
Fonseca, T.R., (1989). An overview of the Poleward Undercurrent and upwelling along the Chilean coast. Neshyba, S.J., Mooers, C.N.K., Smith, R.L., Barber, R.T. Poleward Flows along Eastern Ocean Boundaries. Springer, New York.203228.Google Scholar
François, R., Frank, M., Rutgers van der Loeff, M.M., Bacon, M.P., (2004). 230Th-normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, (PA1018).Google Scholar
Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., (2010a). World Ocean Atlas 2009 volume 4: nutrients (phosphate, nitrate and silicate). Levitus, S. NOAA Atlas NESDIS 71. U.S. Government Printing Office, Washington, D.C..398.Google Scholar
Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., (2010b). World Ocean Atlas 2009 volume 3: dissolved oxygen, apparent oxygen utilisation, and oxygen saturation. Levitus, S. NOAA Atlas NESDIS 70. U.S. Government Printing Office, Washington, D.C..344.Google Scholar
Hebbeln, D., Marchant, M., Freudenthal, T., Wefer, G., (2000). Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology 164, 119137.CrossRefGoogle Scholar
Hebbeln, D., Marchant, M., Wefer, G., (2002). Paleoproductivity in the southern Peru-Chile Current through the last 33 000 yr. Marine Geology 186, 487504.CrossRefGoogle Scholar
Hutchins, D.A., Sedwick, P.N., DiTullio, G.R., Boyd, P.W., Queguiner, B., Griffiths, G.B., Crossley, A.C., (2001). Control of phytoplankton growth by iron and silicic acid availability in the Subantarctic Southern Ocean: experimental results from the SAZ project. Journal of Geophysical Research 106, 31,55931,572.Google Scholar
Ingle, J.C., Keller, G., Kolpack, R.L., (1980). Benthic foraminiferal biofacies, sediments and water masses of the southern Peru-Chile Trench area, southeastern Pacific Ocean. Micropaleontology 26, 113150.Google Scholar
Iriarte, J.L., González, H.E., Liu, K.K., Rivas, C., Valenzuela, C., (2007). Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science 74, 471480.CrossRefGoogle Scholar
Kienast, S.S., Calvert, S.E., Pedersen, T.F., (2002). N isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography 17, 10.1029/2001PA000650.CrossRefGoogle Scholar
Kienast, M., Lehmann, M., Timmermann, A., Galbraith, E., Bolliet, T., Holbourn, A., Normandeau, C., Laj, C., (2008). A mid-Holocene transition in the nitrogen dynamics of the western equatorial Pacific: evidence of a deepening thermocline?. Geophysical Research Letters 35, 10.1029/2008GL035464(L23610).Google Scholar
Lamy, F., Hebbeln, D., Röhl, U., Wefer, G., (2001). Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382.Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H., Stoner, J., (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 19591962.CrossRefGoogle ScholarPubMed
Lamy, F., Kaiser, J., Arz, H.W., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., Toggweiler, J.R., (2007). Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth and Planetary Science Letters 259, 400413.CrossRefGoogle Scholar
Marret, F., de Vernal, A., Benderra, F., Harland, R., (2001). Late Quaternary sea-surface conditions at DSDP Hole 594 in the southwest Pacific Ocean based on dinoflagellate cyst assemblages. Journal of Quaternary Science 16, 739751.CrossRefGoogle Scholar
Martinez, P., Robinson, R.S., (2010). Increase in water column denitrification during the last deglaciation: the influence of oxygen demand in the eastern equatorial Pacific. Biogeosciences 7, 19.CrossRefGoogle Scholar
Martinez, P., Lamy, F., Robinson, R.S., Pichevin, L., Billy, I., (2006). Atypical δ15N variations at the southern boundary of the East Pacific oxygen minimum zone over the last 50 ka. Quaternary Science Reviews 25, 30173028.CrossRefGoogle Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, R.J., Sugden, D.E., Clapperton, C.M., (2000). Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15, 409417.Google Scholar
Mitchell, B.G., Brody, E.A., Holm-Hansen, O., McClain, C., Bishop, J., (1991). Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnology and Oceanography 36, 16621677.Google Scholar
Mix, A.C., Tiedemann, R., Blum, P.Shipboard ScientistsLeg 202 Summary. Ocean Drilling Program, College Station, TX.145.Google Scholar
Mohtadi, M., Hebbeln, D., (2004). Mechanisms and variations of the paleoproductivity off northern Chile (24°S–33°S) during the last 40,000 years. Paleoceanography 19, 10.1029/2004PA001003.CrossRefGoogle Scholar
Mohtadi, M., Romero, O.E., Kaiser, J., Hebbeln, D., (2007). Cooling of the southern high latitudes during the Medieval Period and its effect on ENSO. Quaternary Science Reviews 26, 10551066.CrossRefGoogle Scholar
Mohtadi, M., Rossel, P., Lange, C.B., Pantoja, S., Böning, P., Repeta, D.J., Grunwald, M., Lamy, F., Hebbeln, D., Brumsack, H.-J., (2008). Deglacial pattern of circulation and marine productivity in the upwelling region off central-south Chile. Earth and Planetary Science Letters 272, 221230.Google Scholar
Morales, C.E., Blanco, J.L., Braun, M., Reyes, H., Silva, N., (1996). Chlorophyll-a distribution and associated oceanographic conditions in the upwelling region off northern Chile during the winter and spring 1993. Deep-Sea Research I 43, 267289.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
Naish, T.R., Carter, L., Wolff, E., Pollard, D., Powell, R., (2009). Late Pliocene–Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Florindo, F., Siegert, M. Developments in Earth and Environmental Sciences 8, Elsevier, Amsterdam, The Netherlands.465529.Google Scholar
Ninnemann, U.S., Charles, C.D., (1997). Regional differences in Quaternary subantarctic nutrient cycling: link to intermediate and deep water ventilation. Paleoceanography 12, 4 560567.CrossRefGoogle Scholar
Pisias, N.G., Heusser, L., Heusser, C., Hostetler, S.W., Mix, A.C., Weber, M., (2006). Radiolaria and pollen records from 0 to 50 ka at ODP Site 1233: continental and marine climate records from the Southeast Pacific. Quaternary Science Reviews 25, 455473.CrossRefGoogle Scholar
Robinson, R.S., Sigman, D.M., DiFiore, P.J., Rohde, M.M., Mashiotta, T.A., Lea, D.W., (2005). Diatom-bound 15N/14N: new support for enhanced nutrient consumption in the ice age subantarctic. Paleoceanography 20, 10.1029/2004PA001114(PA3003).CrossRefGoogle Scholar
Robinson, R.S., Mix, A., Martinez, P., (2007). Southern Ocean control on the extent of denitrification in the southeast Pacific over the last 70 ka. Quaternary Science Reviews 26, 201212.Google Scholar
Robinson, R.S., Martinez, P., Pena, L.D., Cacho, I., (2009). N isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific. Paleoceanography 24, 10.1029/2008PA001702(PA4213).CrossRefGoogle Scholar
Romero, O.E., Kim, J.-H., Hebbeln, D., (2006). Paleoproductivity evolution off central Chile from the Last Glacial Maximum to the Early Holocene. Quaternary Research 65, 519525.CrossRefGoogle Scholar
Saavedra-Pellitero, M., Flores, J.A., Lamy, F., Sierro, F.J., Cortina, A., (2011). Coccolithophores estimates of paleotemperature and paleoproductivity changes in the southeast Pacific over the past 27 kyr. Paleoceanography 26, 10.1029/2009PA001824.Google Scholar
Sarmiento, J.L., Gruber, N., Brzezinski, M.A., Dunne, J.P., (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 5660.Google ScholarPubMed
Schneider, W., Fuenzalida, R., Rodríguez-Rubio, E., Garcés-Vargas, J., (2003). Characteristics and formation of Eastern South Pacific Intermediate Water. Geophysical Research Letters 30, 10.1029/2003GL017086.CrossRefGoogle Scholar
Shaffer, G., Salinas, S., Pizarro, O., Vega, A., Hormazabal, S., (1995). Currents in the deep ocean off Chile (30°S). Deep-Sea Research 42, 425436.Google Scholar
Sigman, D.M., Boyle, E.A., (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859869.CrossRefGoogle ScholarPubMed
Sigman, D.M., Altabet, M.A., François, R., McCorkle, D.C., Gaillard, J.F., (1999). The isotopic composition of diatom-bound N in Southern Ocean sediments. Paleoceanography 14, 118134.Google Scholar
Strub, P.T., Mesias, J.M., Montecino, V., Ruttlant, J., Salinas, S., (1998). Coastal ocean circulation off western South America. Robinson, A.R., Brink, K.H. The Global Coastal Ocean: Regional Studies and Syntheses. John Wiley, New York.273315.Google Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.CrossRefGoogle ScholarPubMed
Tsuchiya, M., Talley, L.D., (1996). Water-property distribution along an eastern Pacific hydrographic section at 135°W. Journal of Marine Research 54, 541564.CrossRefGoogle Scholar
Tsuchiya, M., Talley, L.D., (1998). A Pacific hydrographic section at 88°W: water-property distribution. Journal of Geophysical Research 103, 1289912918.Google Scholar
Verleye, T.J., Louwye, S., (2010a). Late Quaternary environmental changes and latitudinal shifts of the Antarctic Circumpolar Current as recorded by dinoflagellate cysts from off Chile (41°S). Quaternary Science Reviews 29, 10251039.Google Scholar
Verleye, T.J., Louwye, S., (2010b). Recent geographical distribution of organic-walled dinoflagellate cysts in the southeast Pacific (25–53°S) and their relation to the prevailing hydrographical conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 298, 219340.CrossRefGoogle Scholar
Verleye, T.J., Pospelova, V., Mertens, K.N., Louwye, S., (2011). The geographical distribution and (palaeo)ecology of Selenopemphix undulata sp. nov., a new late Quaternary dinoflagellate cyst from the Pacific Ocean. Marine Micropaleontology 78, 6583.Google Scholar