Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T01:01:30.840Z Has data issue: false hasContentIssue false

Can the Greenland Climatic Jumps be Identified in Records from Ocean and Land?

Published online by Cambridge University Press:  20 January 2017

Wallace S. Broecker
Affiliation:
Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10965 USA
Michael Andree
Affiliation:
Physics Institute, Universitat Bern, Sidlerstrasse 5, 3000 Bern, Switzerland
Georges Bonani
Affiliation:
Laboratorium fur Kernphysik, ETH Honggerberg, 8093 Zurich, Switzerland
Willi Wolfli
Affiliation:
Laboratorium fur Kernphysik, ETH Honggerberg, 8093 Zurich, Switzerland
Hans Oeschger
Affiliation:
Physics Institute, Universitat Bern, Sidlerstrasse 5, 3000 Bern, Switzerland
Mieczyslawa Klas
Affiliation:
Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10965 USA

Abstract

Sharp jumps in climate punctuate the records from borings in the Greenland ice cap during the time interval 60,000 to about 20,000 yr ago. Rapid fluctuations are also seen in foraminifera records for cores from the northern Atlantic and in a pollen record from a core from a bog in the Vosges Mountains in France. In this paper we present a new radiocarbon chronology for northern Atlantic deep-sea core V23-81 which permits comparison with the radiocarbon-dated Vosges Mountains pollen record. Because of the lack of a 14C chronology for the Greenland ice record and of distortions peculiar to each of the three records, it is not yet possible to say whether or not the events are genetically related.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andree, M., Beer, J., Oeschger, H., Bonani, G., Hofmann, H.J., Morenzoni, E., Nessi, M., Suter, M., Wolfli, W., (1984). Target preparation for milligram-sized 14C samples and data evaluation for AMS measurements. Nuclear Instruments and Methods in Physics Research B. 5, 274-279.CrossRefGoogle Scholar
Andree, M., Beer, J., Sotscher, H.P., Moore, E., Oeschger, H., Bonani, G., Hofmann, H.J., Morenzoni, E., Nessi, M., Suter, M., Wolfli, W., (1986). Dating polar ice by 14C accelerator mass spectrometry. Radiocarbon. 28, 417-423.Google Scholar
Beer, J., Andree, M., Oeschger, H., Stauffer, B., Balzer, R., Bonani, G., Stoller, Ch., Suter, M., Wolfli, W., Finkel, R.C., 10Be variations in polar ice cores. Langway, C.C., Oeschger, H., Dansgaard, W., (1985). Greeland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union Monograph 33. 66-70.Google Scholar
Broecker, W. S., Andree, M., Wolfli, W., Oeschger, H., Bonani, G., Kennett, J., and Peteet, D., (in press). The chronology of the last deglaciation implications to the cause of the Younger Dryas event. . Paleooceanography..Google Scholar
Dansgaard, W., Clausen, H.B., Gunderstrup, N., Johnsen, S.J., Rygner, C., Dating and climatic significance of two deep Greeland Ice Cores. Langway, C.C., Oeschger, H., Dansgaard, W., (1985). Greeland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union Monograph 33. 71-76.Google Scholar
Druffel, E.M., (1980). Radiocarbon in annual coral rings of Belize and Florida. Radiocarbon. 22, 363-371.Google Scholar
Goldthwait, R.P., (1958). Wisconsin age forests in western Ohio I: Age and glacial events. The Ohio Journal of Science. 58, 209-230.Google Scholar
Hammer, C.U., Clausen, H.B., Dansgaard, W., Neftel, A., Kristinsdottir, P., Johnson, E., Continuous impurity analysis along the Dye 3 deep core. Langway, C.C., Oeschger, H., Dansgaard, W., (1985). Greeland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union Monograph 33. 90-94.Google Scholar
Mickelson, D.M., Clayton, L., Fullerton, D.S., Born, H.W. Jr., The late Wisconsin glacial record of the Laurentide Ice Sheet in the United States. Porter, S.C., (1983). Late-Quaternary Environments of the United States. Vol. 1 Univ. of Minnesota Press, Minneapolis, 3-37.Google Scholar
Rind, D., Peteet, D., Broecker, W., McIntyre, A., Ruddiman, W., (1986). The impact of cold North Atlantic sea surface temperatures on climate: Implications to the Younger Dryas cooling (11-10K). Climate Dynamics. 1, 3-33.Google Scholar
Ruddiman, W.F., McIntyre, A., (1981). The North Atlantic Ocean during the last deglaciation. Paleogeography, Paleoclimatology, Paleoecology. 35, 145-214.Google Scholar
Ruddiman, W.F., Sancetta, C.D., McIntyre, A., (1977). Glacial/Interglacial response rate of subpolar North Atlantic waters to climatic change: The record in oceanic sediments. Philosophical Transactions of the Royal Society, London Series B. 280, 119-142.Google Scholar
Stauffer, B., Neftel, A., Oeschger, H., Schwander, J., CO2 concentration in air extracted from Greenland ice camples. Langway, C.C., Oeschger, H., Dansgaard, W., (1985). Greenland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union Monograph 33. 85-89.Google Scholar
Suter, M., Balser, R., Bonani, G., Hofmann, H., Morenzoni, E., Nessi, M., Wolfli, W., Andree, M., Beer, J., Oeschger, H., (1984). Precision measurements of 14C in AMS: Some results and prospects. Nuclear Instruments and Methods in Physics B. 5, 117-122.CrossRefGoogle Scholar
Woillard, G.M., (1978). Grande Pile peat bog: A continuous pollen record for the last 140,000 yr. Quaternary Research. 9, 1-21.Google Scholar
Woillard, G., Mook, W.G., (1982). Carbon-14 dates at Grande Pile: Correlation of land and sea chronologies. Science. 215, 159-161.Google Scholar